Green Infrastructure: A Landscape Approach

“There are really two definitions of green infrastructure. One is an inter-connected network of green open spaces that provide a range of ecosystem services — from clean air and water to wildlife habitat and carbon sinks. The other is a more limited one promoted by the E.P.A.: small-scale green systems designed to be urban stormwater management infrastructure. In either definition, green infrastructure is about bringing together “natural and built environments” and using the “landscape as infrastructure,” said Rouse. […]”

Jared Green's avatarTHE DIRT

gibook
Green infrastructure is starting to mean different things to different people, said David Rouse, ASLA, a landscape architect and planner at Wallace, Roberts & Todd (WRT) during a session at the American Planning Association (APA) conference in Chicago. Rouse was there with Theresa Schwarz, Kent State Cleveland Urban Design Collaborative; Karen Walz, Strategic Community Solutions; and Ignacio Bunster-Ossa, FASLA, a landscape architect with WRT, who together co-authored a new book published by APA called Green Infrastructure: A Landscape Approach.

There are really two definitions of green infrastructure. One is an inter-connected network of green open spaces that provide a range of ecosystem services — from clean air and water to wildlife habitat and carbon sinks. The other is a more limited one promoted by the E.P.A.: small-scale green systems designed to be urban stormwater management infrastructure. In either definition, green infrastructure is about bringing together “natural and…

View original post 1,297 more words

Venture Capital from GE, Autodesk Invest in Smart Building Technology Boom

Sales of smart building technologies almost could triple to $17.4 billion between 2014 and 2019. That’s driving a flood of investment from corporations and venture capitalists alike.

Source: www.greenbiz.com

>” […] As of this week, you can add cloud software company Lucid to the list of energy-efficiency startups — particularly those that monitor building power consumption for lighting and climate-control systems — attracting substantial cash infusions this year.

Among those contributing to the $14.2 million Series B round disclosed by Lucid this week: GE Ventures, Autodesk, Formation 8 and Zetta Venture Partners.

Lucid plans to use the new funds for enhancements to BuildingOS, a cloud service that analyzes data from more than 160 hardware and software building technologies.

“Lucid’s technology is rapidly connecting many disparate building systems together, making the vision of truly connected buildings and real-time management possible,” said Ben Sampson, an associate with GE Ventures.

Its reference accounts include Genentech, along with more than a half-dozen educational institutions such as Cornell University and Stanford University.

Lucid joins a respectable list of companies attracting private capital this year, as businesses and organizations become more comfortable with gathering data from the Internet of Things.

Research firm Mercom Capital Group reports that startups focused on smart grid and energy efficiency raised more than $325 million in the first quarter.

Two deals last quarter that explicitly focused on building management or analytics: Blue Pillar, which scored a $14 million deal after more than 250 deployments; and Enbala Power Networks, which raised $11 million.

All told, the last year has been incredibly active in the sector, reaching $944 million in 2014. Those investments covered more than 111 deals at a time when the broader field of cleantech has suffered a decline in available capital, according to a separate report from Lux Research.

“While cleantech is declining from its peak of 291 deals in 2008, building energy deals have risen steadily since then, growing by 208 percent over the same period,” Lux wrote in its presentation about funding trends.

One of the more notable deals over the past two years was Distech Controls, which raised about $37 million in May 2013. […]

Why so active?

The spike in funding reflects the rather bullish revenue projects for building energy management technologies over the next decade. Depending on how broadly you view the market, projections vary dramatically.

If you focus just on building energy management, revenue is likely to reach around $2.4 billion this year, growing almost fivefold to $10.8 billion by 2024, according to the forecast from Navigant Research.

Players in the space include not only a slew of startups, but also multinational companies such as Siemans and Intel.

“Building energy management systems (BEMS) represent an important evolutionary step in the approach to facilities and operations management,” said Casey Talon, senior analyst, commenting on that projection. “As the market matures, more integrated and sophisticated BEMS solutions are delivering energy efficiency improvements while also enabling comprehensive business intelligence and strategic management.”

Indeed, if you consider smart buildings from a more holistic perspective, the growth potential is much larger — up to $17.4 billion by 2019, compared with $6.3 billion last year, according to IDC Energy Insights. In North America, spending is being driven by large corporate operational efficiency initiatives. “<

See on Scoop.itGreen & Sustainable News

IMF Reports Global Energy Subsidies are Unmanageable, Inefficient and Reinforce Inequality

A new report from the International Monetary Fund (IMF) urged policymakers the world over to reform subsidies for products from coal to gasoline, arguing that this could translate into major gains both for economic growth and the environment.

Image Source:  http://bit.ly/1LO0yQb

Source: www.imf.org

>” […] In a speech at the Peterson Institute for International Economics in Washington D.C., marking the release of the paper, IMF First Deputy Managing Director David Lipton noted that “subsidy reform can lead to a more efficient allocation of resources, which will help spur higher economic growth over the longer term.” Removing energy subsidies can also strengthen incentives for “research and development in energy-saving and alternative technologies,” he said. He also noted that, while intended to benefit consumers, subsidies are often inefficient and “could be replaced with better means of protecting the most vulnerable parts of the population.”

“The paper shows that for some countries the fiscal weight of energy subsidies is growing so large that budget deficits are becoming unmanageable and threaten the stability of the economy,” Mr. Lipton said, adding that IMF research shows that 20 countries maintain pre-tax energy subsidies that exceed 5 percent of GDP. For other emerging and developing countries, he said, the share of the scarce government resources spent on subsidies remains “a stumbling block” to higher growth and fundamentally impairs their future. “Because of low prices, there is little investment in much-needed infrastructure. More is spent on subsidies than on public health and education, undermining the development of human capital.”

Energy subsidies also reinforce inequality because they mostly benefit upper-income groups, which are the biggest consumers of energy. “On average, the richest 20 percent of households in low- and middle-income countries capture 43 percent of fuel subsidies,” said Mr. Lipton.

At the same time, Mr. Lipton warned that an increase in prices which can result from subsidy reform can have a significant impact on the poor and that “mitigating measures to protect them as subsidy reform is implemented” must be an integral part of any successful and equitable reform program.

In addition, Mr. Lipton noted that “subsidies aggravate climate change and worsen local pollution and congestion.” The study finds that eliminating pre-tax subsidies would reduce global CO2 emissions by about 1-2 percent which would, by itself, represent “a significant first step in reducing emissions by delivering about 15-30 percent of the Copenhagen Accord’s goal.” As for advanced economies, he noted that subsidies most often take the form of taxes that are too low to capture the true costs to society of energy use (“tax subsidies”), including pollution and road congestion. “Eliminating energy tax subsidies would deliver even more significant emissions reductions said Mr. Lipton, reducing “CO2 emissions by 4.5 billion tons, a 13 percent reduction.” […]”<

See on Scoop.itGreen & Sustainable News

Idle Load Reduction Strategies for Energy Efficiency Gains and Clean Air

NRDC: Always-on but inactive devices may cost Americans $19 billion and 50 power plants’ worth of electricity annually.

Source: www.nrdc.org

>”  […]  Idle load or “baseload” electricity consumption includes appliances and equipment in off or “standby” mode but still drawing power; in “sleep mode” ready to power up quickly; and left fully on but inactive. Much of this always-on energy provides little or no benefit to the consumer because most devices are not performing their primary function and home occupants are not actively using them.

The Natural Resources Defense Council partnered with Home Energy Analytics and the Stanford Sustainable Systems Lab to assess the impact of the growing cohort of always-on devices on consumer utility bills. We used three separate data sets: smart meter data from 70,000 northern California homes; smart meter and additional information for 2,750 San Francisco Bay Area homes; and a detailed in-home audit of 10 Bay area homes.

We found that “always-on” electricity use by inactive devices represents on average nearly 23 percent of northern California household electricity consumption.

But if all homes in the United States reduced their always-on load for inactive devices to the level that a quarter of the homes in our study already achieve, it would:

save consumers $8 billion on their annual utility bills,avoid 64 billion kilowatt-hours of electricity use per year, andprevent 44 million metric tons of carbon dioxide pollution, or 4.6 percent of U.S. residential sector carbon dioxide (CO2) emissions from electricity generation.

[…] Ensuring that electronics, appliances, and miscellaneous electrical devices consume only as much electricity as necessary when unused presents a huge opportunity to save energy and money. Eliminating this energy waste also decreases the number of fossil fuel–burning power plants necessary to generate electricity, thereby reducing harmful air pollutants and carbon emissions that threaten our health and the environment.

Given that these power plants account for nearly 40 percent of U.S. carbon pollution, smarter energy use can have a measurable impact on overall emissions and would help states comply with emissions reduction targets under the government’s Clean Power Plan to set the first-ever limits on this dangerous pollution. In addition, optimizing energy use helps eliminate the need to build new expensive energy infrastructure, saving utilities and their customers money.

In the meantime, consumers can take these steps in their homes and businesses:

Optimize the efficiency of their current devices;Buy more efficient appliances, electronics, and miscellaneous devices, such as those labeled ENERGY STAR™, whether replacing old models or purchasing new ones;Urge lawmakers to enact idle load labeling so shoppers can avoid products with high idle loads; andInsist that all devices be required to meet idle load efficiency standards so there is no need to worry about models needlessly wasting electricity, the same way regulatory mechanisms ensure that our vehicles are safe to drive and foods are safe to eat.  “<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Facts About Solar Powered LED Lights

Clearworld Solutions's avatarClearworld Solutions

led street lamps

In spite of all the hype about combating global warming and switching to environmentally friendly sources, little attention has been given to the streetlights. Whilst they are crucial to the public, they are very energy consuming, and their servicing is costly. Thus, it is worthy of note when a big city like Los Angeles reports that it will replace 140,000 streetlights with LEDs.

LEDs are attaining traction as a great alternative to conventional lighting because they are relatively environmentally friendly, don’t consume much power and have long life spans. They survive so long, 14 years or more in some instances, that they can be regarded as “semi-permanent”.

Several of the most significant electronic firms see LEDs as the destiny of lighting. The LED market of seasonal lights, lights on the Empire State Building, and so on, is estimated to have a worth of $1 billion by 2013.

In earlier times…

View original post 341 more words

US Energy Storage Capacity to Triple in 2015

Over triple the amount of energy storage capacity — 220 megawatts worth — is expected to come on-line this year.

Source: www.triplepundit.com

>” […] 2015 looks set to be a milestone year for advanced energy storage solutions. Some 220 megawatts worth of energy storage capacity will be deployed across the nation in 2015 – more than three times the 2014 total, according to an inaugural market research report from GTM Research and the Energy Storage Association (ESA). The organizations see growth continuing “at a rapid clip thereafter.”

The number of grid-connected electrochemical and electromechanical storage installations that came on-line in 2014 totaled 61.9 megawatts of power capacity, the organizations found, up 40 percent from 44.2 MW in 2013. One leading distributed energy storage pioneer delivered over a third of the total.  […]

Utility deployments dominated the fast emerging U.S. market for advanced energy storage systems in 2014, accounting for 90 percent of newly-installed capacity. So-called “behind the meter” installations at utility customer sites – commercial and industrial companies, government facilities, schools, hospitals and municipalities – made up 10 percent of the 2014 total.

But installations of “behind the meter” energy storage systems picked up sharply in the fourth quarter of 2014, GTM and ESA note. Going forward, GTM expects behind-the-meter installations will account for 45 percent of the overall market by 2019.

Advanced energy storage system deployments are also concentrated in states that have and/or are in the process of instituting market regulatory reforms and supportive policies, including mandates and incentive programs. GTM and ESA singled out California and states where PJM is responsible for grid operations and management – all or part of 13 states across the eastern U.S. and the District of Columbia – as early leaders.

“The U.S. energy storage market is nascent, but we expect it to pick up more speed this year,” GTM Research SVP Shayle Kann was quoted in a Greentech Media news report. “Attractive economics already exist across a broad array of applications, and system costs are in rapid decline. We expect some fits and starts but significant overall growth for the market in 2015.”

[…]”<

See on Scoop.itGreen Energy Technologies & Development

Brewery’s Waste Treatment Bio-Gas Fuel Micro-Turbines for Grid Power

Sierra Nevada taps waste-to-energy technologies as a way to close operational loops and demonstrate responsible brewing practices.

Source: www.rewmag.com

>”[…]

Biogas benefits

Sierra Nevada operates breweries in Chico, California, and in Mills River, North Carolina. While the Chico facility has been in operation since 1980, the Mills River brewery didn’t break ground until 2012. Both facilities operate anaerobic digesters for treating brewery effluent water. Each facility uses the biogas produced from the digesters a little bit differently. In Chico, the biogas is used to offset natural gas production for use in its boilers. The Mills River digester is also used in the boilers but is also being fed into two 200-kilowatt microturbines from Capstone of Chatsworth, California, which will generate electricity to power the operation.

McKay says the first anaerobic digester was installed in Chico in 2002, well before the technology had gained traction in the United States. The digester, manufactured by Veolia Water Technologies subsidiary Biothane, Pennsauken, New Jersey, is an upflow anaerobic sludge bed. The biogas produced from the digestion process is cleaned and treated by a biogas skid designed by Fuel Cell Energy, Danbury, Connecticut, before it is used in the boilers. When the digester was initially installed, Sierra Nevada had planned on using the biogas in its fuel cells, but the inconsistent flow of biogas from the digester was problematic for the fuel cells without a buffer zone.

“We just decided we would send the biogas all to the boilers because the boilers could definitely use it,” says McKay.

The fuel cells were installed in Chico in 2005 and are considered “old technology” by today’s standards, according to McKay. The company is currently deciding on a replacement for the fuel cells which is planned to be completed by the end of the year. Fuel cells, microturbines and other engine technologies have all been considered as potential replacements.

“Ideally we would like to produce electricity from any biogas we are producing at the wastewater treatment plant,” McKay says, adding, “It is fine to use in the boiler, but we would prefer to make electricity because it would be closing the loop a little bit better.” […]”<

See on Scoop.itGreen Energy Technologies & Development

Microsoft Uses Big Data To Manage Buildings and Facilities

MicrosoftCampus

“My initial expectation was that we would see the return on investment in terms of driving down our energy costs, and we have seen that,” says Pittenger, to whom Smith reports. “What wasn’t part of my expectations was the gains we would have in operational efficiencies and our abilities to do repairs and maintenance much, much better and much, much smarter.”

Source: www.facilitiesnet.com

Image:  http://news.microsoft.com/2009/11/23/california-coding-microsoft-campus-in-silicon-valley-turns-10/

>” […] Over those 125 buildings on the main Microsoft campus, there are more than 30,000 building systems components — assets, in Smith’s terms — and more than 2 million points where building systems ranging from HVAC to lighting to power monitoring are connected to sensors. In a 24-hour period, those systems produce half a billion data transactions. Each one is small, but when you’re talking about half a billion of something, all those 1s and 0s add up pretty quickly.

But what’s important is being able to do something with those 1s and 0s, which Microsoft could not do until recently because of the mess of systems involved, says Jim Sinopoli, managing principal, Smart Buildings, who helped set up the software pilot program.

“You have an opportunity, if you’re building a new campus or a new building, to really start with a clean slate,” he says. “But you go in these existing buildings and you generally will come upon some unforeseen obstacles.”

The project turned out to be a relatively easy sell. First, Pittenger’s background is financial, so being able to show a strong ROI was a definite plus for Smith, because his boss understands exactly what that means when it comes time to ask for funding. Second, facilities management at Microsoft benefits from a company culture that considers every department to be a key player.

“(CEO) Steve Ballmer likes to say, ‘There are no support organizations at Microsoft,'” Pittenger says. “Everybody is fundamental to the core mission of the company. And we feel that way.”

After gaining approval, the first step was deciding how those obstacles would be overcome. Smith and his team began by writing out 195 requirements for the new way of operating and what their ultimate tool would be able to do. Then they proceeded to look around for an off-the-shelf solution that would be able to do all those things — and failed to find one. So, they built it.

More specifically, they worked with three vendors in a pilot program, encompassing 2.6 million square feet, to build an “analytics blanket” of fault detection algorithms that is layered on top of the different building management systems and reports back to the operations center. If Building 17 and Building 33 have different building management systems, those systems may not be able to talk to each other or provide data to a single reporting system in the operations center. But they can talk to the analytics blanket, which can take the information from every building and combine it into a single output in the operations center. It’s not a replacement for the BMS; instead, it’s adding on functionality that enhances the benefits of the existing BMS.”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Net Zero Building Nears Completion in Edmonton

the mosaic centre for conscious community and commerce is nearly ready for occupancy, which could make it the most northerly net-zero structure on the planet.

Source: www.journalofcommerce.com

>” […] The Edmonton centre’s designers and builders are hoping that others can learn from the project that sustainable design doesn’t have to be costly or time consuming – so much so that they have made the contract, calculations and drawings available to anyone.

The City of Edmonton said the Mosaic Centre will be the world’s most northerly commercial building to achieve net zero status, the city’s first designated LEED platinum building, the first in Alberta to be petal certified by the Living Building Challenge and Canada’s first triple bottom line commercial building.

Once completed, the new 30,000 square foot building will include  photovoltaic panels that will cover much of the roof.

It will also have LED lighting designed with a time-clock/daylight controller to meet minimum light levels and a geo-exchange system which will draw heat in winter and coolant in summer.

The 32 bore hole geothermal system reduced the size of the system by 40 kW, saving about $150,000.

It was built 25 per cent ahead of schedule and five per cent under budget.

HKA architect Vedran Skopac, who worked on the project, said it was done to prove to the industry that complex, sustainable buildings can be delivered on time, on budget and without animosity between the parties.

He said the key to this all started with using Integrated Project Delivery (IPD).

The model emphasizes collaboration at an early stage and encourages all the participants to use their talents and insights throughout the different stages for best results.

“It goes all the way down to the end of the line of the tradesmen,” Skopac said.

“We invested so much in designing the process, and training and making everyone a leader.”

Skopac said a major influence on designing the actual structure was creating collision spaces, or places where building residents would be forced to meet and interact.

Skopac also wanted to influence sustainable behavior, like making windows easy to operate and open rather than using air conditioning, and making natural light penetrate deep into the building rather than encourage residents to turn on lights. […]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Amager Resource Center Copenhagen, Designed by Bjarke Ingels Group (BIG)

The waste-to-energy plant in Copenhagen was selected as a citation winner in the 62nd Annual Progressive Architecture Awards.

Source: www.architectmagazine.com

“BIG won the competition for the 1.02 million-square-foot Amager Resource Center with this widely touted scheme, which promises to turn a waste-to-energy plant into a popular attraction. By integrating a ski slope into the roof and a rock-climbing wall up one face, the architects build upon the project’s location: a part of Copenhagen on the island of Amager that has become a destination for extreme sports enthusiasts, thanks to its parks, beaches, dunes, and a lagoon for kayaking and windsurfing.  At 100 meters tall, the center will be one of the city’s tallest landmarks when completed—and a striking example of building-as-landscape. Indeed, the client has taken to calling it the Amager Bakke, or Amager Hill.”

See on Scoop.itGreen Building Design – Architecture & Engineering