Study Finds BC Pension Fund Manager is Funding Climate Agreement Breach

A study* released by the Corporate Mapping Project (CMP), a watchdog organization indicates that public pensions could be overly invested in the fossil fuel industry. This is a concern as international agreements signed by Canada are directed to reducing emissions, while public money is invested in an agenda that requires growth and production in a sector which is in decline.

Image result for kinder morgan pipeline

Figure 1. Map of proposed expansion current pipeline and tanker route – Kinder Morgan / Trans Mountain Pipeline. (1)


Image result for kinder morgan pipeline

Figure 2. Map of impact of refinery facilities and proximity to conservation areas, a University, a Salmon spawning inlet, residential housing and major transport routes. (1)


The area that will be impacted by the growth of the facility are diverse and vulnerable. This is not a brownfield development, and in fact is on the side of a mountain and part of a larger watershed. Serious consideration should be given to relocating the facility or decommissioning.

There are alternate locations better suited for this type of high hazard industrial facility, away from sensitive areas and remote from populations and high traffic harbours. Why are these alternatives not being discussed?

Here’s a snippet taken from the introduction of the report and their findings. How can we stop carbon emissions when local investing strategies are in the opposite direction? Are public pension funds safely invested and competently managed? Likely not.


CMP researchers Zoë Yunker, Jessica Dempsey and James Rowe chose to look into BCI’s investment practices because it controls one of the province’s largest pools of wealth ($135.5 billion) — the pensions of over half-a-million British Columbians. Which means BCI’s decisions have a significant impact on capital markets and on our broader society.

Their research asked, “Is BCI is investing funds in ways that effectively respond to the climate change crisis?”

Unfortunately, the answer is “No.” BCI has invested billions of dollars in companies with large oil, gas and coal reserves — companies whose financial worth depends on overshooting their carbon budget — and is even increasing many investments in these companies.

As another recent CMP study clearly shows what’s at stake. Canada’s Energy Outlook, authored by veteran earth scientist David Hughes, reveals that the projected expansion of oil and gas production will make it all but impossible for Canada to meet our emissions-reduction targets. The study also shows that returns to the public from oil and gas production have gone down significantly. (2)


*This study is part of the Corporate Mapping Project (CMP), a research and public engagement initiative investigating the power of the fossil fuel industry. The CMP is jointly led by the University of Victoria, Canadian Centre for Policy Alternatives and the Parkland Institute. This research was supported by the Social Science and Humanities Research Council of Canada (SSHRC).


  1. kinder_morgan_pipeline_route_maps
  2. fossil-fuelled-pensions

Microgrids and the Blockchain – Transforming the Energy Supply

Author: Duane M. Tilden, P.Eng.           Date: June 10, 2018

In the transition from the centralized utility is the development of the Micro-grid.  The Micro-grid offers many benefits to society, including; (a) use of renewable energy sources that reduce or eliminate the production of GHG’s, (b) increases in energy efficiency of energy transmission due to shortening of transmission distances and infrastructure, (c) improved municipal resilience against disaster and power reductions, and finally, (d) promotion of economic activity that improves universal standard of living. (1)

The Brooklyn Microgrid Experiment

A Network of Energy Cells (2)

In order to be successful, blockchain platforms and microgrids require a regulatory framework. In New York State, such a framework is provided by “Reforming the Energy Vision” (REV). The platform’s objectives are to minimize the vulnerability of the power supply system that became visible during Hurricane Sandy, to use more sources of renewable energy, and to reduce costs.

The Brooklyn Microgrid is a good test case for these objectives. “A microgrid is a nucleus that sets the stage for an energy future consisting of networks of energy cells,” says Stefan Jessenberger from Siemens’ Energy Management Division. “Blockchain also supports this process, because it makes it much easier to conduct energy trading within cells.”

Siemens Digital Grid, next47, and LO3 Energy all believe in the potential of blockchain-based microgrids, because this technology can be used wherever there are decentralized energy sources. “Our experiences with the Brooklyn Microgrid will certainly flow into future projects,” says Kessler.

Image #1: A Canal in Brooklyn, New York (5)

The Future is Now

But something else is happening to the grid as energy generation changes – the rise of microgrids. These smaller grid systems are linked to localised power sources, often referred to as “distributed generation” sources. For example, a handful of buildings in a city with their own solar panels might be connected to nearby residences.

In fact, that is exactly the model that LO3 Energy has experimented with in its Brooklyn Microgrid project. Customers signed up to it can choose to power their homes via a range of local renewable energy sources. People with their own solar panels can sell surplus electricity to their neighbours, for example. It’s a peer-to-peer network for electricity.

To ensure that accurate records of these transactions are kept, LO3 has opted to use blockchain distributed ledger technology. This means the microgrid’s accounting is decentralised and shared by everyone on the network.

“It’s virtually unhackable,” says founder and chief executive Lawrence Orsini, explaining that tampering with these records is almost impossible because of the fact that everyone has their own, regularly updated copy of the ledger.

LO3 is now rapidly expanding with a series of other projects around the world. One is based in South Australia, where Orsini explains there is already a lot of distributed generation going on – and plenty of grid stability issues. Users can now experiment with LO3 to get access to electricity from solar-fuelled batteries nearby when needed. (3)

Physical and Virtual Microgrids

Challenging the traditional electrical supply model are microgrids. The “microgrid” term normally refers to a localised grid that can disconnect from the main grid and operate autonomously. It uses local sources of energy to serve local users, integrating the supply of energy from various producers, including local power generators and providers of renewable energy such as solar power. Consumers with their own energy production capabilities (wind turbines or solar energy systems) can sell their surplus energy production back to peers in the microgrid, on a pay-per-use basis (becoming ‘prosumers’).

While physical microgrids are still rare, we do observe the development of virtual microgrids using peer-to-peer energy trading. Blockchain is just one element in the transformation of electricity supply, providing Distributed Ledger Technology (DLT) to members of a peer-to-peer energy network, or microgrid. It offers [or ‘provides’] a reliable, lower-cost digital platform for making, validating, recording and settling energy transactions in real time across a localised and decentralised energy system.

With increasing demand for more flexible energy supplies we expect a continued increase in the number of virtual microgrids and a gradual movement towards true, physical microgrids along 4 stages […] (4)

“This project…, is the first version of a new kind of energy market, operated by consumers, which will change the way we generate and consume electricity.”
New Scientist (5)


  1. microgrid-as-a-service-maas-and-the-blockchain/
  2. smart-grids-and-energy-storage-microgrid-in-brooklyn
  4. energy-and-resources/articles/will-microgrids-transform-the-marke.html

Oilsands and Fossil Fuels Receive Major Blow Due to Paris Agreement

LONDON — Europe’s largest bank HSBC said on Friday it would mostly stop funding new coal power plants, oilsands and arctic drilling, becoming the latest in a long line of investors to shun the fossil fuels.

Other large banks such as ING and BNP Paribas have made similar pledges in recent months as investors have mounted pressure to make sure bank’s actions align with the Paris Agreement, a global pact to limit greenhouse gas emissions and curb rising temperatures.

“We recognize the need to reduce emissions rapidly to achieve the target set in the 2015 Paris Agreement… and our responsibility to support the communities in which we operate,” Daniel Klier, group head of strategy and global head of sustainable finance, said in a statement.

via Europe’s biggest bank HSBC says it will no longer finance oilsands projects — Financial Post

Banning the Internal Combustion Engine: Is this the end of Fossil Fuels?

As a general rule I find that most North Americans are unaware that there is a growing movement of countries that are banning new sales of vehicles powered by gasoline or diesel and may also include other fuels such as propane, compressed and LNG (liquid natural gas).

The local news is rife with plans to grow our exploitation of natural resources and build more pipelines for anticipated expansion to new markets such as China. The federal government is in the process of colluding with the petroleum industry to force the construction of a dil-bit pipeline in a densely populated region of Greater Vancouver.  Meanwhile our future markets are vanishing as other governments are phasing out fossil fuels and their engines.

Image #1: A rendering of the Silent Utility Rover Universal Superstructure (SURUS) platform with truck chassis. 

SURUS was designed to form a foundation for a family of commercial vehicle solutions that leverages a single propulsion system integrated into a common chassis. (1)

Fuel cell technology is a key piece of GM’s zero-emission strategy.

General Motors’ Silent Utility Rover Universal Superstructure (SURUS) is an electric vehicle platform with autonomous capabilities powered by a flexible fuel cell. GM displayed it at the fall meeting of the Association of the United States Army, as the commercially designed platform could be adapted for military use.

SURUS leverages GM’s newest Hydrotec fuel cell system, autonomous capability and truck chassis components to deliver high-performance, zero-emission propulsion to minimize logistical burdens and reduce human exposure to harm. Benefits include quiet and odor-free operation, off-road mobility, field configuration, instantaneous high torque, exportable power generation, water generation and quick refueling times. (1)


Table 1. List of Countries Banning the ICE & Timeline (2)
Wikipedia Table of Countries Banning the Internal Combustion Engine.png

At an automotive conference in Tianjin, China revealed it was developing plans towards banning fossil fuel-based cars. Though China has not set a 2040 goal like the U.K. and France, it said it was working with other regulators on a time-specific ban.

“The ministry has also started relevant research and will make such a timeline with relevant departments. Those measures will certainly bring profound changes for our car industry’s development,” Xin Guobin, the vice minister of industry and information technology, said.

Both India and Norway have also said they have electric car targets set for the next few decades. India, home to heavily polluted cities, said by 2030 it plans to have vehicles solely powered by electricity. (3)

Final Remarks:

I explain this worldwide movement to the electric vehicle and the impact this will have oil markets, however, most of whom I discuss this issue with are unaware of these vital facts. In addition we are seeing growing alternate forms of power sources for our electrical grid, such as solar, wind, tidal, hydro-electric, geothermal and others.

If you ran a business that called for a major investments in capital for infrastructure, would you make it knowing that your market is non-existent? Maybe it’s time for Canadians and Americans to wake up and smell the coffee.


  1. fuel-cell-electric-truck-platform
  2. List_of_countries_banning_fossil_fuel_vehicles
  3. how-internal-combustion-engine-bans-could-catalyze-big-oil-concerns

Why Oil and Pipelines Are a Bad Deal For Canadians – Kinder Morgan/Oil Sands

Let’s get straight to the point. Canadians are getting ripped off. We pay the among the highest prices in the world for our own plentiful resources. Meanwhile we ship it to the US and abroad. This is in clear conflict with stewardship goals of our resources, environment and our collective future. What gives Mr. Trudeau?

Canada taxes its oil and gas companies at a fraction of the rate they are taxed abroad, including by countries ranked among the world’s most corrupt, according to an analysis of public data by the Guardian.

The low rate that oil companies pay in Canada represents billions of dollars in potential revenue lost, which an industry expert who looked at the data says is a worrying sign that the country may be “a kind of tax haven for our own companies.”

The countries where oil companies paid higher rates of taxes, royalties and fees per barrel in 2016 include Nigeria, Indonesia, Ivory Coast and the UK.

“I think it will come as a surprise to most Canadians, including a lot of politicians, that Canada is giving oil companies a cut-rate deal relative to other countries,” said Keith Stewart, an energy analyst with Greenpeace.

Companies like Chevron Canada paid almost three times as much to Nigeria and almost seven times as much to Indonesia as it did to Canadian, provincial and municipal governments.

Chevron used to run its Nigeria and Indonesia projects out of the U.S., but after allegations that they evaded billions in taxes, their operations were moved to Canada.

According to data collected by the Guardian, Suncor also paid six times more taxes to the UK, and Canadian Natural Resources Limited (CNRL) paid almost four times more to Ivory Coast. (1)

Image result for oilsands

Figure 1. Taken from: Alberta First Nation presents evidence against Teck’s exploratory drilling for oil sands mine (2)

CALGARY – British Columbia’s government wants to restrict shipments of oilsands crude in pipelines and on railways cars in the province through a series of proposed new rules that is set to create additional uncertainty for Kinder Morgan Canada’s $7.4-billion Trans Mountain pipeline expansion.

The proposed rules also open B.C. up to jurisdictional challenges and have already exacerbated a spat with Alberta Premier Rachel Notley, who called the proposals “both illegal and unconstitutional.”

B.C. Environment and Climate Change Strategy Minister George Heyman announced Tuesday rules to limit “the increase of diluted bitumen transportation until the behaviour of spilled bitumen can be better understood and there is certainty regarding the ability to adequately mitigate spills.”

To that end, B.C. will establish an independent scientific advisory panel to make recommendations on if and how heavy oils can be safely transported and, if spilled, cleaned up.

Tuesday’s announcement did not specifically mention Kinder Morgan’s Trans Mountain expansion, which will boost the shipments of oil from Alberta to Burnaby, B.C. from 300,000 barrels per day to 890,000 bpd, but the B.C. NDP had promised to block the pipeline’s construction during an election campaign last year.

In an interview with the Financial Post, Heyman said B.C.’s Environmental Management Act “gives us the right, in addition to our responsibility, to defend B.C.’s vulnerable coastline, our inland waterways, our economic and environmental interests and that’s what British Columbians expect us to do.” (3)

Justin Trudeau, Bill Nye


  1. revealed-oil-giants-pay-billions-less-tax-in-canada-than-abroad
  2. athabasca-chipewyan-first-nation-present-evidence-against-tecks-drilling-oil-sands-mine 
  3. b-c-proposes-new-rules-to-restrict-oilsands-exports-in-fresh-setback-for-trans-mountain-pipeline

UBC Report Findings Show Better Options Than Site C Dam

Keywords: UBC, Site C, Hydro, Dams, Energy, Electricity, Renewable Energy, Employment, Jobs, Environment, Sustainable, Conservation, Water, Governance, British Columbia

In a November 23 report issued “by a team of researchers led by Dr. Karen Bakker ” finds “Site C creates fewer jobs and has larger environmental impact.” (1)

“[…New Research Report: Comparative Assessment of Site C Employment (17 November 2017)

A new UBC report compares employment numbers from Site C versus the alternatives, and concludes: stopping Site C will create a larger number of sustainable jobs in the province, including in the Peace Region.

UBC’s Program on Water Governance has conducted a detailed comparison of employment generated by Site C versus the alternative portfolios put forward by BC Hydro and the BCUC.

  • Our analysis indicates that terminating Site C and pursuing the alternatives results in modest job losses in the short term, and substantial job gains in the medium and long-term.
  • These jobs are generated by remediation, conservation, and alternative energy projects.
  • Terminating Site C and pursuing any alternative portfolio creates a higher number of sustainable jobs in the province, including in the Peace Region.
  • Site C provides the least jobs per dollar spent.

…]” (1)



Renewable Energy and Heat Pumps – Net Zero Energy by Design

As a mechanical engineer I spent 17 years in design of mechanical systems. Always seeking the best solution given budgets and adhering to efficient design principles. Often we can combine systems by hybridization, where two technologies come together in a synergistic match. I have used hybrid technologies, using ground loops and air-air fluid coolers, with heat pumps successfully in the mechanical design and construction of a number of buildings.

While wind energy may be harvested, it is not always available. Some regions get more wind than others, and there may be governmental or civic restrictions. For renewable energy, solar may be a better option than wind, even though it is only available during the day. In either case some form of auxiliary power will be required, such as batteries,  grid connection, fuel powered generator, or hydro-power.

The use of heat pumps allows for the provision of a number of heating and cooling devices which may be connected to a central circulating building loop. As heat pumps have operating temperatures generally between 40F to 90F, although it may vary depending on heat energy source, such as air, water or ground.  Air temperatures may vary during the day and season. As air temperature drops, heat pumps lose efficiency. We can see this in the following figure. (1)


In the case of geothermal heat pump system design, there are some options. One method is to run a water source such as a pond, river, body of water in an open loop design,  in a closed loop method using an process waste heat stream or ground coupled system. Either system is usually connected to a heat-exchanger to which is connected a second closed house loop. The house loop is controlled to either discharge or gain heat from the geothermal loop.

I am attaching  a blog post (2) from 2007 where I made a comment in 2009. This blog post is still getting comments. I believe such systems can be designed and constructed and would contribute to a “Net-Zero” building systems.

I am a lawyer who has been interested in the subject of energy conservation since the seventies. Back when we had the first OPEC crisis, I thought this country would head in a direction away from the consumption of huge quantities of oil and gas. It didn’t happen. Now of course, our thirst for oil has been the primary reason for a preemptive war with no end in sight. Moreover, peak oil seems to be here. And so far nothing much seems to have changed. But the public, may at last be ready for something different.

There are some real promising things happening with new solar energy systems and with wind turbines. It is long past due. But I still keep wondering whether we are approaching this problem of solving our energy demands the right way. With both solar and wind systems all technology seems to be headed toward the creation of electricity. Electricity is definitely useful but often inefficient.

Heating and cooling costs are about 60-70 percent of home energy costs. It is far more cost effective to use heat transfer than to make heat. Water source heat pumps are 300-400 percent efficient while the best ordinary HVAC systems might be forty percent efficient. (Are they that much?) What if you could even vastly surpass the efficiency of a water source heat pump. How? By making the wind pump the water instead of an electric pump.

Why not use wind to its best advantage? Make the wind do what it has done very efficiently for hundreds of years: pump water. Make it pump water from a warm place to a cold place and make it store the heat where the heat is needed or wanted. In the winter pump the heat from under the ground into the house. In the summer pump the heat from house into the ground.

To do this, because of the wind’s variability, one would need a huge (?) thermal sink in the house to slowly release the heat transferred from underground to the heat sink or to transfer the heat from the house to the ground while the wind was not blowing.

A four part system. A wind turbine. A pump. A closed loop of pipe. An interior thermal sink.

It is fairly well known that in most climates, five or six feet below ground, the temperature is a about 55 degrees. I think it is quite possible to take advantage of the geothermal underground temperature by using a wind turbine to pump water from underground into an interior thermal sink. If a large enough volume of water could be circulated to where the interior heat sink reached 55 degrees, I think such a home’s heating and cooling costs would be drastically reduced.

If the large thermal sink could get the house temperature substantially raised in the winter and substantially cooled in the summer, very little additional energy might be required to bring it to a desirable temperature with the use of a water source heat pump. A water source heat pump would work in tandem very well by using the internal heat sink as a convenient source to operate a water source heat pump.

My idea would be to use a vertical wind turbine on the roof coupled to an Archimedes screw to pumps and circulates water through the closed loop. The vertical wind turbines seem to need less wind, have more torque, and are quieter. I also think that from an architectural point of view, they would look much more attractive, especially the ones that look like spinnerets. They also take advantage of a sloping roof which increases wind speed.

I also think the Archimedes screw would be an ideal pump. It requires no gears or lubrication and could attach by a straight shaft to the vertical wind turbine. An Archimedes screw would be very inexpensive as pumping systems go and extremely reliable as there is really nothing to break.

I have other ideas about roof design and about turbine design for greater efficiency. I also have ideas about the plumbing. What I would like to see is whether there are people out there who think this idea has commercial merit and if so, how we might go about making wind driven water pumping for geothermal transfer a success. We would need some engineering and architectural expertise and some ability to fabricate the wind turbines and pumps.

I look forward to responses.

Duane Tilden said…

I have been looking at the latest responses and it seems to me there is some confusion about this idea.

Firstly, heat pump technology, as pointed out achieves it’s high COP’s from the phase change. It is through the leveraging of the refrigerant phase change from a fluid to the gas phase where heat energy can be obtained from low temperature heat sources. This is how geothermal heat pumps can obtain heat energy from relatively low temp sources such as the ground where nominal ambient water temp would be at 55F and deliver hot water at temps of 90F to 140F.

Alternatively heat pumps can be used in air/air, air/water, water/air and water/water configurations. These are generally stand alone devices where in a properly engineered installation do not require supplemental heat sources.

Wind energy is a separate sustainable, environmentally friendly application. In my opinion the OP’s idea of using wind energy to move water around for a heat pump application is marginal and likely too capital intensive to realize any real benefit. Also, it is just too restrictive, in my opinion.

Wind energy converted directly to electricity, or other dedicated pumping applications where electricity is not available is best (water pumping up to a reservoir in agricultural or power generation schemes for example). There also may be some merit to the idea of storing the energy as compressed air, but the amount of heat generated would not be significant, usable heat source. Try heating your home with a candle.

Electricity is used by a wide range of applications, so why not use the wind energy to best effectiveness? The operation of the compressor in the heat pump and the pumps to run the water loop(s) require electricity, so do common home appliances.

There may be some applications where the proffered idea would make sense, but not likely widely applicable for single family residences unless you have a large property and money to burn.

SEPTEMBER 26, 2009 AT 10:44 PM



  1. heat-pump-effective-temperature-range/
  2. wind-turbine-heat-pump-geothermal

Are Cryptocurrencies a Fad or a Revolution in Finance?

Duane M. Tilden, P.Eng
November 5, 2017

As I was walking to my weekly bridge game at the local club, I was pondering my newfound interest in cryptocurrencies, Bitcoin, Ethereum, the block chain, and related topics such as mining, smart contracts, ICO’s; the list goes on. I also thought about the value of things from my childhood, like marbles, hockey and baseball trading cards, comic books, coins, stamps, post cards, and other things that I have collected. All which created markets and gained extrinsic value over time, and could be held speculatively. I then asked myself, “Are cryptocurrencies a passing  fad or here to stay?”

What Makes a Currency Valuable?

Some things, such as coins may be made of a valuable base metal alloy, like gold, silver, nickel and copper. Coins are currency, and as such a perfect example to assessing intrinsic value and extrinsic value. In the past coins were minted with higher contents of the base metal alloys.  The metal content gave them an intrinsic value due to the metals rarity and utility. In time, these metals gained value, to the point where it cost more to mint a coin than it was worth.  People would then begin to horde or “mine” the coin for its intrinsic value which was greater than it’s face value as a currency.


Figure 1. The Metcalfe Curve (1)

Extrinsic value, however, could be likened to what we would consider the “fiat” aspect of a currency. As currencies have moved away from a gold or silver standard, the value of money is largely based on consensus. Markets are also consensus driven, without a universal agreement or set of rules, there could not be trade. This is the reason for the development for money or currency. I work and get paid in the common unit of currency, which I can then use to buy and rent goods and services.

Currency and Security

Until recent developments, Governments and their agencies in partnership with banking institutions have generally controlled currency and financial markets. The operation of the economy is the basis upon which society functions. Money exchanges hands for goods and services, including wages. One currency usually denominates value in a physical market. However, these markets can be subject to various forms of attack or manipulation. Physical money could be counterfeited, transfer of money and assets could be lost or stolen, other forms of fraud could occur where one loses their assets.

Another form of attack is personal, or on the individual. Local regulations and taxation laws require valuation of assets and income which are held by the individual to be known to the public agency and could be subject to economic deprivation and restrictions. This is an instance where individual privacy is violated in built-in, systemic and semi-transparent.

Examples of this are everywhere, such as income tax, sales tax, medical tax, alimony and child-support, retirement and pension plans, insurance. If you owe the government money in a disputed case, they often will violate an individuals rights to deprive them of assets, such as money in bank accounts, garnishee of wages directly from the employer, denial of services, loss of principal residence and other such actions.

Most of the money that we earn, own, or spend is being tracked by the government. There are lots of taxes and lots of “rules” made by the big boys. Unfortunately, the present financial system is often disadvantaging us. Why? Because it often collects more than it provides. (2)

Consensus and Fiat Money

Since a currency in today’s world generally consists of a consensus agreeing in a trading market place, then the truth is anything can have value. As the internet has opened up trading across international borders, and companies have sprung up in the financial market place to provide services beyond their physical location, often catering to the world. I can purchase electronics from China and have them delivered to Canada on eBay, using PayPal or a credit card to exchange in their accepted currency. Buy and sell ads have sprung up, such as Craigslist and Kijiji , allowing wider ranging access to markets at a greatly reduced costs as compared to paper advertising in magazines.

Computer users over time had an edge over non-users, as information became available in a vast manner over greater areas. Shopping for the best price of a desired item, good or service can be searched for on my laptop and obtained at a fair cost. No longer does one have to go out and purchase a paper magazine or ad book, in their search. We now can now open a browser on our computer, or digital device, ask a question on a search engine and sort through a selection of answers. Phone numbers, addresses, reviews, prices, hours of operation, names of staff, job openings and more information is all available quickly and efficiently.

Enter the Bitcoin, blockchains and crypto-currencies. In one report recently obtained, sourced from the international Engineering Firm ARUP (2) it has been stated about Bitcoin, a technology introduced by Satoshi Nakomoto.

At the start of 2009,when the world was in the middle of a major financial crisis, a paradigm shift in technology quietly made its debut. That technology is called Bitcoin, and it’s the biggest innovation in finance in 500 years, and certainly the greatest invention of the 21st century so far. (3)

Cryptocurrencies Create Markets

Beyond creating an anonymous system of financial transactions and storage, crypto-currencies are creating new markets of value and trade. There has been a recent wave of new crypto-currencies coming on the market, most of which have issued whitepapers, and have sales landing pages which outline the details about structure, their markets or business plan, how to participate, and their projected timeline.

In my opinion, issuing tokens for sale is very similar to crowd-funding, which may also be likened to buying or selling shares on the stock market, without the restrictions or regulations necessarily placed on participants. Whether or not these activities are legal may depend on local jurisdictions. However, as long as no laws are broken for the purposes of making transactions in a business manner, or the proposed ecosystem,  then personal privacy of participants and security should be secured to all qualified participants, which are traits of a crypto-currency like the original Bitcoin.

The tokens offered in the pre-ICO sales are generally intended to fund the business operations, which, if all goes well, will turn a profit and be able to provide token based services. Details of the venture and how proceeds from projected profits are to be distributed are usually outlined in the white paper. Tokens may be able to be openly traded as a currency, depending on various applicable rules and regulations which may apply and being able to be listed on the various exchanges.

For example a current energy token on the market, (4) –  is a blockchain-based peer-to-peer energy trading platform enabling consumers and businesses to sell their surplus solar power to their neighbours without a middleman.

<From a Media Press Release>  Power Ledger is based in Perth and uses blockchain technology to allow households to trade excess solar power over the electricity network.

Major Australian power retailer Origin Energy recently announced a three-month trial with Power Ledger to explore the benefits and challenges of peer-to-peer energy trading across a regulated network.

“Blockchain technology and cryptocurrency underpins our business offering and we are excited to be working with Perth-based DigitalX” said Power Ledger Chair Dr Jemma Green.

POWR tokens will be offered via the Ethereum cryptocurrency network in an uncapped price offer, meaning the tokens’ final price will be determined by the market demand.

“POWR will be the Ethereum blockchain protocol token required throughout the Power Ledger eco-system that can be converted to ‘Sparkz’, which is the crypto-currency we have set up for users to trade electricity using the platform,” said Dr Green.

As part of the engagement,DigitalX will introduce cryptocurrency investors to Power Ledger in exchange for a fee which consists of a mix of Ether (ETH) and POWR tokens.

“Blockchain-enabled innovation is disrupting traditional industries and digital currency is changing the way companies access capital. DigitalX is pleased to be able to facilitate this quantum shift in traditional mechanisms for accessing funding,” said Mr Travers.  (5)

Generally speaking, however, most crypto-currencies will have many advantages over fiat currency or stock markets. For one, their trade is not restricted to one market, or country to operate. Beyond anonymity one can store value in one token, exchange it for another, buy services on a network, or hold it speculatively. There are the other aspects related to smart contracts and the block-chain where physical assets or other attributes, such as counting operations of a machine or device can be linked to a token. In fact the possibilities seem endless, only bounded by the limits of imagination.

Cryptocurrency Offerings and Exchanges

Every day I receive more notifications regarding new offerings on a multiple of news feeds. Many of these offerings look good and viable. There are many new white-papers to read, and some are quite technically advanced and detailed in outlook and projections. As more cryptocurrencies are introduced into markets and traded on platforms investments will be expected to continue.

As cryptocurrencies are rapidly gaining acceptance and appeal, the task of evaluating all emerging offerings would be odious without methods of categorization, comparison and establishing legitimacy. At this time, according to the, there are 1257 Cryptocurrencies with a total market cap of $199 Billion USD currently listed on exchanges. Currently there are 121 active exchanges trading cryptocurrencies (5) and in the last 24 hours there was a “volume of 614,489 BTC and $4,396,051,516 on 5915 trading pairs” (6).

Other resources of current token or coin offerings and other related information can be found on various websites, including and

The Future of Cryptocurrency

At the current pace of innovation, new offerings, and investment as determined by market capitalization, it does not appear that current rapid growth in cryptocurrencies  slow down. Rather, examining current trends in cryptocurrency and comparing to models, it appears that we are in the innovation and early adoption phases of a technological innovation, as seen in figure 2. (7)


Figure 2. Technological Adoption Curve (7)

In addition to the known bell curve of adoption, the value of the networks being formed on the internet, obeys Metcalfe’s law, see figure 1.

Metcalfe’s law states that the value of a telecommunications network is proportional to the square of the number of connected users of the system (n2).

As we can surmise from the effect of Metcalfe’s law as it applies to the development of cryptocurrencies is that we are currently in the earlier phases of value development, which will be expected to grow at an exponential rate associated with a nodal peer to peer model.


Two telephones can make only one connection, five can make 10 connections, and twelve can make 66 connections.

For innovators and early adopters these are exciting times as the number of participants continue to grow, and more capital continues to be invested in fledgling commercial enterprises. New business plans for ICO and Token issues are being issued every day. There are technical developments coming, apps, games, lenders and financial instruments, as well as new types of Tokens being issued with a variety of proof’s or calculation methods. Blockchains technology is changing to become increasingly efficient to handle ever increasing numbers of transactions. At this time there appears to be no limit to the possible applications of blockchain technology.


Figure 3. Combined Curve – Crossing the Chasm (1)

[…] The combination of Moore’s and Metcalfe’s laws explains the rise of information technology and the growth of the Internet as we know it today. […] And finally, in an unprecedented apotheosis, by combining the three preceding charts and by ― I have to admit ― visually cheating with axes, scales, and representations I came to the observation that the chasm is actually the point where the transition from a technology driven business to a value driven business needs to take place ― and if this doesn’t happen, that any new product or technology introduction is doomed to fail.


Expect that there are traps and pitfalls, some ventures may be fraudulent or simply fail. No guarantees on individual outcomes of ICO’s or other value propositions, and, as in all markets expect that there will be both successes and failures.

Expect, in various regions, government control and regulation, which may attempt to prevent or limit participation by populations or otherwise affect and manipulate markets.

Every participant in any new market, such as a cryptocurrency,  is advised to perform their own due diligence and research before investing capital.

No guarantees or warrantees are implied or expressed by the author, who, may at any time, hold vested interests in a variety of cryptocurrency tokens for speculation or other purposes.



  1. The Metcalfe Curve
  2. 7 Trends in Cryptocurrency Entrepreneurs Should Know
  3. Blockchain-Technology (for the Built Environment)
  4. How PowerLedger Works -Snapshot
  5. Home Page
  7. The Early Days of Cryptocurrency


Microgrid as a Service (MaaS) and the Blockchain

It is a splendid event to observe when two new technologies combine to create a new marketplace. In recent years as new sources of distributed energy have been entering the electrical grid to provide power they are necessitating a change to the existing large-scale infrastructure model of power supply.

Classic Electric Power Grid Model

Figure 1. Classic electric power grid model with bulk generators transferring power long distances to reach the consumer.  Image courtesy of NetGain Energy Advisors. (1)

The old model utility was large and centralized and tracking transactions was simple as consumers were on one side of the ledger, while the provider as on the other. And whereby currency and energy flowed only in opposite directions between two identified parties, consumer and provider.

In the emerging markets of small-scale independent energy providers, we can see buildings, communities and even individual residences having built capacity to provide intermittently or on demand power at times, and consume or store power from the grid at other times. Solar power is only available during the day, and will require new commercial methods of energy storage.


Figure 2. An example Microgrid (2)

In the transition from decentralized utility is the development of the Micro-grid.  The Micro-grid offers many benefits to society, including; (a) use of renewable energy sources that reduce or eliminate the production of GHG’s, (b) increases in energy efficiency of energy transmission due to shortening of transmission distances and infrastructure, (c) improved municipal resilience against disaster and power reductions, and finally, (d) promotion of economic activity that improves universal standard of living.

As buildings and communities evolve they are moving toward renewable energy sources to supplement their energy requirements and reduce operating costs. Even the building codes are getting into the act, requiring buildings be constructed to new energy efficiency standards. Also, we are seeing the development of new technologies and business methods, such as solar powered charging stations for electric vehicles.

The existing electrical grid and utility model has to develop and adapt to these new technologies and means of locally generating power. The future will include the development and incorporation of peer to peer networks and alternative energy supply methods. Consumers may purchase power from multiple sources, and produce power and supply it to other users via the electrical grid.

Micro-grid and the Blockchain

As new energy sources/providers emerge there is added complexity to the network. Consumers of power can also be an energy providers, as well as having different energy sources available. This increased functionality raises the complexity of possible transactions in the network.

Imagine a financial ledger, where each user in the system is no longer constrained to be a consumer, but also a supplier to other users in the system. In order to track both the credits and debits it has been proposed that the exchange of blockchain tokens be utilized to sort out complicated energy transfer transactions in a distributed P2P network.


This class of Platform Application gives retailers the ability to empower consumers (or in an unregulated environment, the consumers themselves) to simply trade electricity with one another and receive payment in real-time from an automated and trustless reconciliation and settlement system. There are many other immediate benefits such as being able to select a clean energy source, trade with neighbors, receive more money for excess power, benefit from transparency of all your trades on a blockchain and very low-cost settlement costs all leading to lower power bills and improved returns for investments in distributed renewables. (3)

One blockchain based energy token that has caught my attention is called POWR and is currently in pre-ICO sales of the tokens by the Australian platform Power Ledger. One of the uses of the platform that is being suggested is peer to peer trading.

 “We are absolutely thrilled with the results of the public presale,” says Dr Jemma Green, co-founder and chair of Power Ledger. “Selling out in just over 3 days is a very strong performance in line with global ICO standards, which speaks to the strong levels of interest from consumer and institutional buyers.”

The proceeds from the total pre sale were AU$17 million and the main sale on Friday offers approximately 150 million POWR tokens (subject to final confirmation before the sale opens) in an uncapped sale, meaning that the level of market demand will have set the final token price at the end of the sale. (4)



  1. The Changing Power Landscape
  2. Siemens – Microgrid Solutions
  3. Power Ledger Applications
  4. PRESS RELEASE Having Closed $17M In Their Presale ICO, Power Ledger Confirm Their Public Sale Will Commence on 8th September 2017

The BC Energy Step Code – Missing the Point

The BC Energy Step Code is currently being implemented in British Columbia as an answer to future energy considerations in new building construction. It achieves this claim of moving towards “Net Zero” building construction by utilizing a building envelope first approach with modeling and a performance test.

The idea is that by raising a building’s theoretical energy efficiency a building will become a net zero home. In the process, there is a requirement for a certified and licensed energy adviser to be involved in the modeling, construction and testing phases of the building. (1)

In conjunction with this approach is the claim that builders can construct these buildings being “fuel-neutral”. Using this rationale the roles of mechanical systems design, testing and commissioning are omitted in the performance considerations of the building.

However, a net-zero building must include the omitted systems as the design and operation of necessary systems. These may include the ventilation and exhaust systems, water heating, laundry, and heating systems. Also, rain-water collection for irrigation and gray water systems or other load reduction schemes may all may contribute to the energy consumption and success of a “net zero” building.

Some of these services will always be required in a municipal setting such as electrical, water and waste. Reduction strategies are advised as further increases in population will add additional loads at existing consumption rates which might overload existing supply and waste systems infrastructure such as pipes and cable.

The final answer to how a building performs will be in the overall utility bills paid by the building for its operation. This includes the electrical power, gas consumption, solid and liquid waste disposal and water supplied. Unless you live in a remote rural area where none of these services are provided by a municipality, there will always be a design component of the mechanical systems that contributes to the operation of an energy efficient home.


  1. How the BC Energy Step Code Works