Utility To Replace N-Gas Peaker Plants With Energy Storage

Duane M. Tilden, P.Eng                          November 10, 2018

The main caveat of Energy Efficiency is to do more with less. Energy Efficiency is low-lying fruit, easy to harvest. For utilities and the grid there are many advancements coming that will allow us to enable a more resilient and sustainable electrical transmission system connecting providers, consumers, and prosumers.

Electricity Prosumers & Renewable Energy

“Active energy consumers, often called ‘prosumers’ because they both consume and produce electricity, could dramatically change the electricity system. Various types of prosumers exist: residential prosumers who produce electricity at home – mainly through solar photovoltaic panels on their rooftops, citizen-led energy cooperatives or housing associations, commercial prosumers whose main business activity is not electricity production, and public institutions like schools or hospitals. The rise in the number of prosumers has been facilitated by the fall in the cost of renewable energy technologies, especially solar panels, which in some Member States produce electricity at a cost that is the same or lower than retail prices.” (1)

What is a Peaker Plant?

Peaking power plants, also known as peaker plants, and occasionally just “peakers”, are power plants that generally run only when there is a high demand, known as peak demand, for electricity.[1][2] Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants, which supply a dependable and consistent amount of electricity, to meet the minimum demand.” (2)

As more renewable energy projects are added to provided base load power, in an absence of electricity when renewable sources of electricity are inactive a greater reliance is put on peaker plants to make up energy shortfall . However, as improvements in energy storage solutions gain traction through capacity and competitive costing it is now possible to replace fossil fuel powered peaker plants with energy storage.

Public Utilities Commission of the State of California (CPUC)

In a recent decision the State of California has proceeded with plans to develop and procure electrical storage solutions for the Public Utility as an alternative to aging natural gas peaker plants. A net reduction in carbon emissions by eliminating fossil fuel consumption.

Energy Storage California 2018

Table 1 – Summary of Pacific Gas and Electric’s (PG&E’s) energy storage power purchase
agreements (PPAs)

“Approval of PG&E’s landmark energy storage solicitation is the most significant example to date of batteries taking the place of fossil fuel generation on the power grid.

Energy storage has helped decrease the California’s reliance on gas for years, particularly since 2016, when regulators ordered accelerated battery procurements to counteract the closure of a natural gas storage facility outside Los Angeles.

The PG&E projects, however, are the first time a utility and its regulators have sought to directly replace multiple major power plants with battery storage.

The projects would take the place of three plants owned by generator Calpine — the 580 MW Metcalf plant and the Feather River and Yuba City generators, both 48 MW.

​Calpine and the California ISO last year asked the Federal Energy Regulatory Commission to approve reliability-must-run (RMR) contracts for the plants, arguing they are essential to maintain power reliability. The one-year contracts would see California ratepayers finance the continued operation of the generators, which are losing money in the ISO’s wholesale market.

FERC approved the request in April, but California regulators were already planning for when the plants retire. In January, they ordered PG&E to seek alternatives to the generators, writing that the lack of competition in RMR contracts could mean higher prices for customers. ” (4)

 

References:

  1. European Parliament Think Tank – Electricity Prosumers
  2. Peaking_power_plant
  3. Resolution E-4949. Pacific Gas and Electric request approval of four energy storage facilities with the following counterparties: mNOC, Dynegy, Hummingbird Energy Storage, LLC, and Tesla.
  4. Storage to replace California Peaker Plants
Advertisements

Zip Code 00000

Quote

via The 50 Year Underground Coal Mine Fire

“In this part of Pennsylvania, a mine town gone bust is hardly news. But there is none whose demise has been so spectacular and observable. Centralia has been on fire, literally, for the past four decades.

The Centralia mine fire began in 1962 when a pile of burning trash ignited an exposed seam of coal. The fire soon seeped down into the lattice of old mine tunnels beneath town. When it was founded in 1866, Centralia’s ocean of underground coal, aptly named the Mammoth Vein, meant limitless wealth. But once the fire began, it came to mean endless destruction.

This abandoned section of Route 61 runs smack through one of Centralia’s so-called hot zones. In these areas the underground fire directly affects the surface landscape. The traffic that used to flow over this section of road has been permanently detoured several hundred yards to the east. Thanks to a recent snowfall, the tracks of other visitors are obvious — that is until the snow cover abruptly ends. It’s as if someone has drawn a line across the road. On one side there’s snow. On the opposite side there’s bone-dry asphalt. The road’s surface is not exactly warm. But the asphalt is definitely not as cold as it should be on a chilly day in the Appalachian Mountains. In the roadside woods, all the trees are dead, baked to death by the subterranean smolder. Even their bark has peeled away.

Further in, a crack 50 feet in length has ripped through the highway. Puffs of white gas steadily float out. I step to the edge of the crack. It’s about two feet wide and two feet deep, filled with garbage and chunks of broken pavement. Then the wind shifts slightly, and a gas cloud bends in my direction. I cover my nose and mouth with the collar of my jacket. Standing on the roof of this inferno has suddenly lost its appeal. I turn and walk back to my car.”

http://wapo.st/1eMhdGq

Related image

Oldest Nuclear Power Plant in US to be Retired – The 60 Year Decommissioning Process

When a nuclear plant retires, it stops producing electricity and enters into the decommissioning phase. Decommissioning involves removing and safely storing spent nuclear fuel, decontaminating the plant to reduce residual radioactivity, dismantling plant structures, removing contaminated materials to disposal facilities, and then releasing the property for other uses once the NRC has determined the site is safe.

According to Exelon, Oyster Creek will undergo a six-step decommissioning process. The typical decommissioning period for a nuclear power plant is about 60 years, so parts of the Oyster Creek plant structure could remain in place until 2075. (1.)

retired nuclear power plants and nuclear power plants that have announced retirement

Since 2013, six commercial nuclear reactors in the United States have shut down, and an additional eight reactors have announced plans to retire by 2025. The retirement process for nuclear power plants involves disposing of nuclear waste and decontaminating equipment and facilities to reduce residual radioactivity, making it much more expensive and time consuming than retiring other power plants. As of 2017, a total of 10 commercial nuclear reactors in the United States have been successfully decommissioned, and another 20 U.S. nuclear reactors are currently in different stages of the decommissioning process.

To fully decommission a power plant, the facility must be deconstructed and the site returned to greenfield status (meaning the site is safe for reuse for purposes such as housing, farming, or industrial use). Nuclear reactor operators must safely dispose of any onsite nuclear waste and remove or contain any radioactive material, including nuclear fuel as well as irradiated equipment and buildings. (2.)

References:

  1. America’s oldest operating nuclear power plant to retire on Monday
  2. Decommissioning nuclear reactors is a long-term and costly process

Energy Efficiency of Power Production: How Supercritical Carbon Dioxide Turbines Operate

Duane M. Tilden, P.Eng.                                    Sept 1, 2018

Foreword:

This is another article in an ongoing series of reports on the technological development of supercritical carbon dioxide in the power production and energy efficiency sectors of industry, power plants and utilities.

dodge-sco23 supercritical CO2 turbine

Figure 1. Size comparison of Supercritical Power Turbine to Conventional Steam Turbine (1)

Abstract:

The ever increasing search for improving energy and power production efficiency is a natural quest as developments in technology seek to be utilized to improve operations and supply cost effectively. The technologies behind the utilization of supercritical carbon dioxide and other such fluids have long been established. We are furthering our exploration into this sector of power production developing new technologies along the way to a smarter economy and modernization of infrastructure.

The Principle of Operation

Supercritical fluids can play an important role in developing better electricity generators because of their liquid- and gas-like properties. A supercritical fluid is an optimal working fluid because it has a temperature and pressure above its critical point, meaning that it doesn’t have a definite liquid or gas phase. Consequently, the slightest changes in pressure or temperature cause huge changes in the material’s density.

With any supercritical fluid, the ease of compressibility goes up, explains Stapp, so it becomes something more like water. Because supercritical CO2 also compresses more easily than steam, the amount of work done during the compression phase—normally accounting for 25 percent of the work performed inside the system—is dramatically reduced; the energy saved there greatly contributes to the turbine’s overall efficiency.

“We expand it like a gas, and pressurize it like a liquid,” says James Pasch, principle investigator of the Supercritical Carbon Dioxide Brayton Cycle Research and Development Program. “You can do this with any fluid, but supercritical carbon dioxide matches really well with ambient temperatures.”

Carbon dioxide is optimal for this application because it doesn’t go through a phase change at any point during the cycle. Its critical temperature, 88 degrees Fahrenheit, is very close to ambient temperature, which means the heat emitted by the turbine is the same temperature as the surrounding environment. Supercritical carbon dioxide is also very dense; at its critical point, the fluid is about half the density of water. So, in addition to being easier to compress, less work is required to cycle it back to the heat source for re-expansion.

The Brayton Cycle also offers direct environmental benefits. For one, it’s carbon neutral. The system takes carbon dioxide out of the air and puts it in the recompression cycle loop. Just as important is the fact that the system limits water usage by minimizing discharge, evaporation, and withdraw.

“That’s a big deal for the southwest,” says Gary Rochau, manager of Sandia’s Advanced Nuclear Concepts Department. Sandia’s generator can work in places where water is in limited supply. This puts it on par with the Palo Verde Nuclear Power Generating Station, a nuclear power plant in Arizona that uses recycled waste water as cooling water, saving groundwater and municipal water supplies for other uses. (2)

Figure 1. Illustration of a Supercritical CO2 Turbine [Peregrine Turbine Technologies] (2)

Advances in Materials and Technology

GE Reports first wrote about Hofer last year when he 3D printed a plastic prototype of the turbine. His team, partnered with Southwest Research Institute and Gas Technology Institute, has since submitted the design to the U.S. Department of Energy and won an $80 million award to build the 10 MW turbine. The turbine features a rotor that is 4.5 feet long, 7 inches in diameter, and only weighs 150 pounds. The engineers are now completing a scaled-down, 1 MW version of the machine and will test it in July at the Southwest Research Institute.

The idea of using CO2 to power a steam turbine has been around for a while. It first appeared in the late 1960s, and an MIT doctoral student resurrected it in 2004. “The industry has been really interested in the potential benefits of using CO2 in place of steam in advanced supercritical power plants,” Hofer says.

By “supercritical” Hofer means efficient power stations using CO2 squeezed and heated so much that it becomes a supercritical fluid, which behaves like a gas and a liquid at the same time. The world’s most efficient thermal power plant, RDK 8 in Germany, uses an “ultrasupercritical” steam turbine operating at 600 degrees Celsius and pressure of 4,000 pounds per square inch, more than what’s exerted when a bullet strikes a solid object.

Hofer says that the steam power plant technology “has been on a continuous march” to increase efficiency and steam temperature, but once it tops 700 degrees Celsius, “the CO2 cycle becomes more efficient than the steam cycle.” Hofer’s turbine and casing are made from a nickel-based superalloy because it can handle temperatures as high as 715 degrees Celsius and pressures approaching 3,600 pounds per square inch. “You need a high-strength material for a design like this,” he says.

 Figure 2. GE Global Research engineer Doug Hofer is building a compact and highly efficient turbine that fits on a conference table but can generate 10 megawatts (MW), enough to power 10,000 U.S. homes. The turbine, made from a nickel-based superalloy that can handle temperatures up to 715 degrees Celsius and pressures approaching 3,600 pounds per square inch, replaces steam with ultrahot and superpressurized carbon dioxide, allowing for a smaller design.

The hellish heat and pressure turn CO2 into a hot, dense liquid, allowing Hofer to shrink the turbine’s size and potentially increase its efficiency a few percentage points above where state-of-the-art steam systems operate today. “The pressure and fluid density at the exit of our turbine is two orders of magnitude higher than in a steam turbine,” Hofer says. “Therefore, to push the same mass through, you can have a much smaller turbine because the flow at the exit end is much denser.”

Hofer’s design uses a small amount of CO2 in a closed loop. “It’s important to remember that this is not a CO2 capture or sequestration technology,” he says. Hofer says that the technology, which is being developed as part of GE’s Ecomagination program, could one day start replacing steam turbines. “It’s on the multigenerational roadmap for steam-powered systems,” he says.

By virtue of becoming more efficient, the technology could help power-plant operators reduce greenhouse gas emissions. “The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide,” wrote the authors of the International Energy Agency report on measuring coal plant performance. (3)

Previous Blog Posts on Supercritical Carbon Dioxide:

  1. https://duanetilden.com/2016/11/11/transitioning-oil-gas-wells-to-renewable-geothermal-energy/
  2. https://duanetilden.com/2016/03/13/supercritical-co2-used-for-solar-battery-power-system/
  3. https://duanetilden.com/2015/04/23/doe-invests-in-super-critical-carbon-dioxide-turbine-research-to-replace-steam-for-electric-power-generators/
  4. https://duanetilden.com/2013/10/29/supercritical-co2-refines-cogeneration-for-industry/
  5. https://duanetilden.com/2013/10/29/supercritical-co2-turbine-for-power-production-waste-heat-energy-recovery/
  6. https://duanetilden.com/2013/10/29/waste-heat-recovery-using-supercritical-co2-turbines-to-create-electrical-power/

 

References:

  1. supercritical-carbon-dioxide-power-cycles-starting-to-hit-the-market/
  2. supercritical-carbon-dioxide-can-make-electric-turbines-greener
  3. ecomagination-ge-building-co2-powered-turbine-generates-10-megawatts-fits-table/

Study Finds BC Pension Fund Manager is Funding Climate Agreement Breach

A study* released by the Corporate Mapping Project (CMP), a watchdog organization indicates that public pensions could be overly invested in the fossil fuel industry. This is a concern as international agreements signed by Canada are directed to reducing emissions, while public money is invested in an agenda that requires growth and production in a sector which is in decline.

Image result for kinder morgan pipeline

Figure 1. Map of proposed expansion current pipeline and tanker route – Kinder Morgan / Trans Mountain Pipeline. (1)

 

Image result for kinder morgan pipeline

Figure 2. Map of impact of refinery facilities and proximity to conservation areas, a University, a Salmon spawning inlet, residential housing and major transport routes. (1)

 

The area that will be impacted by the growth of the facility are diverse and vulnerable. This is not a brownfield development, and in fact is on the side of a mountain and part of a larger watershed. Serious consideration should be given to relocating the facility or decommissioning.

There are alternate locations better suited for this type of high hazard industrial facility, away from sensitive areas and remote from populations and high traffic harbours. Why are these alternatives not being discussed?

Here’s a snippet taken from the introduction of the report and their findings. How can we stop carbon emissions when local investing strategies are in the opposite direction? Are public pension funds safely invested and competently managed? Likely not.

 

CMP researchers Zoë Yunker, Jessica Dempsey and James Rowe chose to look into BCI’s investment practices because it controls one of the province’s largest pools of wealth ($135.5 billion) — the pensions of over half-a-million British Columbians. Which means BCI’s decisions have a significant impact on capital markets and on our broader society.

Their research asked, “Is BCI is investing funds in ways that effectively respond to the climate change crisis?”

Unfortunately, the answer is “No.” BCI has invested billions of dollars in companies with large oil, gas and coal reserves — companies whose financial worth depends on overshooting their carbon budget — and is even increasing many investments in these companies.

As another recent CMP study clearly shows what’s at stake. Canada’s Energy Outlook, authored by veteran earth scientist David Hughes, reveals that the projected expansion of oil and gas production will make it all but impossible for Canada to meet our emissions-reduction targets. The study also shows that returns to the public from oil and gas production have gone down significantly. (2)

 

*This study is part of the Corporate Mapping Project (CMP), a research and public engagement initiative investigating the power of the fossil fuel industry. The CMP is jointly led by the University of Victoria, Canadian Centre for Policy Alternatives and the Parkland Institute. This research was supported by the Social Science and Humanities Research Council of Canada (SSHRC).

References:

  1. kinder_morgan_pipeline_route_maps
  2. fossil-fuelled-pensions

Microgrids and the Blockchain – Transforming the Energy Supply

Author: Duane M. Tilden, P.Eng.           Date: June 10, 2018

In the transition from the centralized utility is the development of the Micro-grid.  The Micro-grid offers many benefits to society, including; (a) use of renewable energy sources that reduce or eliminate the production of GHG’s, (b) increases in energy efficiency of energy transmission due to shortening of transmission distances and infrastructure, (c) improved municipal resilience against disaster and power reductions, and finally, (d) promotion of economic activity that improves universal standard of living. (1)

The Brooklyn Microgrid Experiment

A Network of Energy Cells (2)

In order to be successful, blockchain platforms and microgrids require a regulatory framework. In New York State, such a framework is provided by “Reforming the Energy Vision” (REV). The platform’s objectives are to minimize the vulnerability of the power supply system that became visible during Hurricane Sandy, to use more sources of renewable energy, and to reduce costs.

The Brooklyn Microgrid is a good test case for these objectives. “A microgrid is a nucleus that sets the stage for an energy future consisting of networks of energy cells,” says Stefan Jessenberger from Siemens’ Energy Management Division. “Blockchain also supports this process, because it makes it much easier to conduct energy trading within cells.”

Siemens Digital Grid, next47, and LO3 Energy all believe in the potential of blockchain-based microgrids, because this technology can be used wherever there are decentralized energy sources. “Our experiences with the Brooklyn Microgrid will certainly flow into future projects,” says Kessler.

 
Image #1: A Canal in Brooklyn, New York (5)

The Future is Now

But something else is happening to the grid as energy generation changes – the rise of microgrids. These smaller grid systems are linked to localised power sources, often referred to as “distributed generation” sources. For example, a handful of buildings in a city with their own solar panels might be connected to nearby residences.

In fact, that is exactly the model that LO3 Energy has experimented with in its Brooklyn Microgrid project. Customers signed up to it can choose to power their homes via a range of local renewable energy sources. People with their own solar panels can sell surplus electricity to their neighbours, for example. It’s a peer-to-peer network for electricity.

To ensure that accurate records of these transactions are kept, LO3 has opted to use blockchain distributed ledger technology. This means the microgrid’s accounting is decentralised and shared by everyone on the network.

“It’s virtually unhackable,” says founder and chief executive Lawrence Orsini, explaining that tampering with these records is almost impossible because of the fact that everyone has their own, regularly updated copy of the ledger.

LO3 is now rapidly expanding with a series of other projects around the world. One is based in South Australia, where Orsini explains there is already a lot of distributed generation going on – and plenty of grid stability issues. Users can now experiment with LO3 to get access to electricity from solar-fuelled batteries nearby when needed. (3)

Physical and Virtual Microgrids

Challenging the traditional electrical supply model are microgrids. The “microgrid” term normally refers to a localised grid that can disconnect from the main grid and operate autonomously. It uses local sources of energy to serve local users, integrating the supply of energy from various producers, including local power generators and providers of renewable energy such as solar power. Consumers with their own energy production capabilities (wind turbines or solar energy systems) can sell their surplus energy production back to peers in the microgrid, on a pay-per-use basis (becoming ‘prosumers’).

While physical microgrids are still rare, we do observe the development of virtual microgrids using peer-to-peer energy trading. Blockchain is just one element in the transformation of electricity supply, providing Distributed Ledger Technology (DLT) to members of a peer-to-peer energy network, or microgrid. It offers [or ‘provides’] a reliable, lower-cost digital platform for making, validating, recording and settling energy transactions in real time across a localised and decentralised energy system.

With increasing demand for more flexible energy supplies we expect a continued increase in the number of virtual microgrids and a gradual movement towards true, physical microgrids along 4 stages […] (4)

“This project…, is the first version of a new kind of energy market, operated by consumers, which will change the way we generate and consume electricity.”
New Scientist (5)

References:  

  1. microgrid-as-a-service-maas-and-the-blockchain/
  2. smart-grids-and-energy-storage-microgrid-in-brooklyn
  3. http://www.wired.co.uk/article/microgrids-wired-energy
  4. energy-and-resources/articles/will-microgrids-transform-the-marke.html
  5. http://brooklynmicrogrid.com/

Oilsands and Fossil Fuels Receive Major Blow Due to Paris Agreement

LONDON — Europe’s largest bank HSBC said on Friday it would mostly stop funding new coal power plants, oilsands and arctic drilling, becoming the latest in a long line of investors to shun the fossil fuels.

Other large banks such as ING and BNP Paribas have made similar pledges in recent months as investors have mounted pressure to make sure bank’s actions align with the Paris Agreement, a global pact to limit greenhouse gas emissions and curb rising temperatures.

“We recognize the need to reduce emissions rapidly to achieve the target set in the 2015 Paris Agreement… and our responsibility to support the communities in which we operate,” Daniel Klier, group head of strategy and global head of sustainable finance, said in a statement.

via Europe’s biggest bank HSBC says it will no longer finance oilsands projects — Financial Post

Banning the Internal Combustion Engine: Is this the end of Fossil Fuels?

As a general rule I find that most North Americans are unaware that there is a growing movement of countries that are banning new sales of vehicles powered by gasoline or diesel and may also include other fuels such as propane, compressed and LNG (liquid natural gas).

The local news is rife with plans to grow our exploitation of natural resources and build more pipelines for anticipated expansion to new markets such as China. The federal government is in the process of colluding with the petroleum industry to force the construction of a dil-bit pipeline in a densely populated region of Greater Vancouver.  Meanwhile our future markets are vanishing as other governments are phasing out fossil fuels and their engines.

Image #1: A rendering of the Silent Utility Rover Universal Superstructure (SURUS) platform with truck chassis. 

SURUS was designed to form a foundation for a family of commercial vehicle solutions that leverages a single propulsion system integrated into a common chassis. (1)

Fuel cell technology is a key piece of GM’s zero-emission strategy.

General Motors’ Silent Utility Rover Universal Superstructure (SURUS) is an electric vehicle platform with autonomous capabilities powered by a flexible fuel cell. GM displayed it at the fall meeting of the Association of the United States Army, as the commercially designed platform could be adapted for military use.

SURUS leverages GM’s newest Hydrotec fuel cell system, autonomous capability and truck chassis components to deliver high-performance, zero-emission propulsion to minimize logistical burdens and reduce human exposure to harm. Benefits include quiet and odor-free operation, off-road mobility, field configuration, instantaneous high torque, exportable power generation, water generation and quick refueling times. (1)

 

Table 1. List of Countries Banning the ICE & Timeline (2)
Wikipedia Table of Countries Banning the Internal Combustion Engine.png

At an automotive conference in Tianjin, China revealed it was developing plans towards banning fossil fuel-based cars. Though China has not set a 2040 goal like the U.K. and France, it said it was working with other regulators on a time-specific ban.

“The ministry has also started relevant research and will make such a timeline with relevant departments. Those measures will certainly bring profound changes for our car industry’s development,” Xin Guobin, the vice minister of industry and information technology, said.

Both India and Norway have also said they have electric car targets set for the next few decades. India, home to heavily polluted cities, said by 2030 it plans to have vehicles solely powered by electricity. (3)

Final Remarks:

I explain this worldwide movement to the electric vehicle and the impact this will have oil markets, however, most of whom I discuss this issue with are unaware of these vital facts. In addition we are seeing growing alternate forms of power sources for our electrical grid, such as solar, wind, tidal, hydro-electric, geothermal and others.

If you ran a business that called for a major investments in capital for infrastructure, would you make it knowing that your market is non-existent? Maybe it’s time for Canadians and Americans to wake up and smell the coffee.

References:

  1. fuel-cell-electric-truck-platform
  2. List_of_countries_banning_fossil_fuel_vehicles
  3. how-internal-combustion-engine-bans-could-catalyze-big-oil-concerns

Why Oil and Pipelines Are a Bad Deal For Canadians – Kinder Morgan/Oil Sands

Let’s get straight to the point. Canadians are getting ripped off. We pay the among the highest prices in the world for our own plentiful resources. Meanwhile we ship it to the US and abroad. This is in clear conflict with stewardship goals of our resources, environment and our collective future. What gives Mr. Trudeau?

Canada taxes its oil and gas companies at a fraction of the rate they are taxed abroad, including by countries ranked among the world’s most corrupt, according to an analysis of public data by the Guardian.

The low rate that oil companies pay in Canada represents billions of dollars in potential revenue lost, which an industry expert who looked at the data says is a worrying sign that the country may be “a kind of tax haven for our own companies.”

The countries where oil companies paid higher rates of taxes, royalties and fees per barrel in 2016 include Nigeria, Indonesia, Ivory Coast and the UK.

“I think it will come as a surprise to most Canadians, including a lot of politicians, that Canada is giving oil companies a cut-rate deal relative to other countries,” said Keith Stewart, an energy analyst with Greenpeace.

Companies like Chevron Canada paid almost three times as much to Nigeria and almost seven times as much to Indonesia as it did to Canadian, provincial and municipal governments.

Chevron used to run its Nigeria and Indonesia projects out of the U.S., but after allegations that they evaded billions in taxes, their operations were moved to Canada.

According to data collected by the Guardian, Suncor also paid six times more taxes to the UK, and Canadian Natural Resources Limited (CNRL) paid almost four times more to Ivory Coast. (1)

Image result for oilsands

Figure 1. Taken from: Alberta First Nation presents evidence against Teck’s exploratory drilling for oil sands mine (2)

CALGARY – British Columbia’s government wants to restrict shipments of oilsands crude in pipelines and on railways cars in the province through a series of proposed new rules that is set to create additional uncertainty for Kinder Morgan Canada’s $7.4-billion Trans Mountain pipeline expansion.

The proposed rules also open B.C. up to jurisdictional challenges and have already exacerbated a spat with Alberta Premier Rachel Notley, who called the proposals “both illegal and unconstitutional.”

B.C. Environment and Climate Change Strategy Minister George Heyman announced Tuesday rules to limit “the increase of diluted bitumen transportation until the behaviour of spilled bitumen can be better understood and there is certainty regarding the ability to adequately mitigate spills.”

To that end, B.C. will establish an independent scientific advisory panel to make recommendations on if and how heavy oils can be safely transported and, if spilled, cleaned up.

Tuesday’s announcement did not specifically mention Kinder Morgan’s Trans Mountain expansion, which will boost the shipments of oil from Alberta to Burnaby, B.C. from 300,000 barrels per day to 890,000 bpd, but the B.C. NDP had promised to block the pipeline’s construction during an election campaign last year.

In an interview with the Financial Post, Heyman said B.C.’s Environmental Management Act “gives us the right, in addition to our responsibility, to defend B.C.’s vulnerable coastline, our inland waterways, our economic and environmental interests and that’s what British Columbians expect us to do.” (3)

Justin Trudeau, Bill Nye

References:

  1. revealed-oil-giants-pay-billions-less-tax-in-canada-than-abroad
  2. athabasca-chipewyan-first-nation-present-evidence-against-tecks-drilling-oil-sands-mine 
  3. b-c-proposes-new-rules-to-restrict-oilsands-exports-in-fresh-setback-for-trans-mountain-pipeline

UBC Report Findings Show Better Options Than Site C Dam

Keywords: UBC, Site C, Hydro, Dams, Energy, Electricity, Renewable Energy, Employment, Jobs, Environment, Sustainable, Conservation, Water, Governance, British Columbia

In a November 23 report issued “by a team of researchers led by Dr. Karen Bakker ” finds “Site C creates fewer jobs and has larger environmental impact.” (1)

“[…New Research Report: Comparative Assessment of Site C Employment (17 November 2017)

A new UBC report compares employment numbers from Site C versus the alternatives, and concludes: stopping Site C will create a larger number of sustainable jobs in the province, including in the Peace Region.

UBC’s Program on Water Governance has conducted a detailed comparison of employment generated by Site C versus the alternative portfolios put forward by BC Hydro and the BCUC.

  • Our analysis indicates that terminating Site C and pursuing the alternatives results in modest job losses in the short term, and substantial job gains in the medium and long-term.
  • These jobs are generated by remediation, conservation, and alternative energy projects.
  • Terminating Site C and pursuing any alternative portfolio creates a higher number of sustainable jobs in the province, including in the Peace Region.
  • Site C provides the least jobs per dollar spent.

…]” (1)

References:

  1. SITE C DAM