Turning to Net Zero for Buildings – The HERS Index

Over the last few months my time has been occupied with travel and work. Relocation and working in construction has consumed certain amounts of time. In the process I have continued to learn and observe my working environment from the perspective of a mechanical engineer.

I have upgraded some of my technology, investing in a smart phone for it’s utility and ease of connection. However, this newer tech is still not the best for longer term research and curation efforts, such as this blog. I am happy to report I have managed to land a longer term residence which now will provide me the needed stability and access to resources, while I can set up my work space needed for more intensive endeavours.

Now relocated in Vancouver, I have a few projects in the works, and am able to get back to focusing some of my time into my own research and development, to which, is one of the major purposes of my blogging. Next week, on September 25th there is a luncheon course presentation I plan on attending regarding upcoming changes to the BC Building Code introducing The Energy Step Code. More on this topic later after the seminar.

In California we already see the movement on towards the construction of net zero buildings, as compliance to the 2016 Building Energy Standard which applies to “new construction of, and additions and alterations to, residential and nonresidential buildings.” (1) These rules came into effect January 1st, 2017. I will be reviewing this publicly available document and provide more insight and commentary at a later time.

One measure of rating homes for energy efficiency that I have seen often referenced and may be a tool for reporting and rating homes is the HERS Index as shown in the graphic.

Image 1:  HERS Index scale of residential home energy consumption.

As we can see from the scale that there is reference home, so there are calculation needed to rate a home, computer methods are available online where a houses data can be input for a curious homeowner, however qualified ratings are to be done by a qualified HERS Rating technician. These ensure by performance tests that a house meets standards in actual use and perform as claimed.

A comprehensive
HERS home energy rating

The HERS Rater will do a comprehensive HERS home energy rating on your home to assess its energy performance. The energy rating will consist of a series of diagnostic tests using specialized equipment, such as a blower door test, duct leakage tester, combustion analyzer and infrared cameras. These tests will determine:

  • The amount and location of air leaks in the building envelope
  • The amount of leakage from HVAC distribution ducts
  • The effectiveness of insulation inside walls and ceilings
  • Any existing or potential combustion safety issues

Other variables that are taken into account include:

  • Floors over unconditioned spaces (like garages or cellars)
  • Attics, foundations and crawlspaces
  • Windows and doors, vents and ductwork
  • Water heating system and thermostats

Once the tests have been completed, a computerized simulation analysis utilizing RESNET Accredited Rating Software will be used to calculate a rating score on the HERS Index. (3)

As buildings become more expensive and are asked to provide ever more services there will be a movement to make these building more efficient to operate and maintain. As we do more with less, there will be social impacts and repercussions. To some these changes may be disruptive, while enabling newer markets in energy efficiency, renewables, energy storage, micro-grids and net zero buildings, to name a few.

References:

  1. California Building Code Title 24 – 2016 Building Energy Efficiency Standards for Residential and Nonresidential Buildings.
  2. Understanding the HERS Index
  3. How to Get a HERS® Index Score
Advertisements

High Efficiency Clothes Washers

Nowadays we are searching for more ways to be energy efficient at home, work and elsewhere.  Our resources are not infinite, even if they are renewable. And, as such, we should be seeking ways to reduce our energy and water consumption, not only to be a good citizen but also for the money it saves which can be utilized elsewhere.

Yesterday I did my laundry, packed all my smelly and soiled clothes in a plastic garbage and headed off to the laundromat in Canmore. I chose a double loader which cost $4 + another buck for the heavy soiled clothing option. Not sure how this thing worked, I bought two small boxes (it’s a double loader after all so two boxes should do, I thought) of Tide for a buck apiece.
Samsung WF210ANW High Efficiency Washer

Figure 1.  Image of a Samsung’s WF210 HE Washing Machine top loading washing machine. (1)

The instructions on the machine were not clear, so I opened the boxes and sprinkled them on my clothes, set the temp for warm and started the machine. It was a 30 min cycle, and after about 5 minutes I did not see any appreciable amount of water in the washer, also I noticed that there was a slot for the detergent. So, I decided to buy another box of detergent and put it into the pull out. The machine was on 10 minutes now, and still no water… wtf?

Image result for high efficiency washing machine

Figure 2.  Graphic comparing a HE washing machine to a traditional top loader. (2)

Okay, so I call the management which operated the local motel, informing them that the machine is broken, and a girl comes out to see what is going on. She assures me it’s fine and working, that the machine uses very little water. Okay, I am skeptical and concerned that with so much detergent and very little water my clothes would not get clean and be covered with a residue.

In the meantime a nice German lady comes over to me and says that she has never seen a top loader before and they only use front loading machines where she is from. I laughed and told her that in Canada we have a tendency to waste our resources as we have so much, whereas in Germany they have a larger population crammed in a small country. The government of Canada has a tendency to give lip service to energy and water efficiency.

The end result was that the clothes came out brilliantly clean with no residue. Most of the water was spun out and the clothes were only slightly damp, which meant that my dryer time was greatly reduced. The amount of heated water and energy used for drying is greatly reduced. Is it not time to get rid of the energy hogs?

 

References:

(1)  High Efficiency Washing Machines Save Money With Less Water, Energy

(2)  High Efficiency Washing Machine

Energy Certificates and the Blockchain Protocol

In the world of energy production, renewable energy sources, micro grids, large scale users, and other forms of electric power schemes there is a concentrated effort being placed on utilizing the Blockchain protocol.  This is because of the unique way in which a unit may be defined and tracked, similarly, can be associated to tracking quantities of value created and utilized in a complex trading scheme.

In a recent article (1) it has been reported that Jesse Morris, principal for electricity and transportation practices at RMI and co-founder of the Energy Web Foundation (EWF) received $2.5 million to develop the Blockchain protocol for energy purposes.

“We have a strong hypothesis that blockchain will solve a lot of long-running problems in the energy sector,” said Morris. “Overcoming these challenges could make small, incremental changes to energy infrastructure and markets in the near term, while others would be more far-reaching and disruptive.”

Certificates (also known as guarantees) of origin would assure the user that a particular megawatt-hour of electricity was produced from renewables. According to Morris, the U.S. alone has 10 different tracking systems, Asia-Pacific has several more, and each European country has its own system of certification. Blockchain could be used to transparently guarantee the origin of the electrons.

Longer-term, and more radically, RMI sees the future of electricity networks being driven by the billions of energy storage and HVAC units, EVs, solar roof panels and other devices and appliances at the grid edge.

Blockchains can allow any of them to set their own level of participation on the grid, without the need for an intermediary. And crucially, they can be configured so that if a grid operator needs guaranteed capacity, the grid-edge unit can communicate back to the grid whether or not it’s up to the task.

This is an example of what Morris described as blockchain’s ability to “fuse the physical with the virtual” via machine-to-machine communication.  (1)

Another example of the emergence of the usefulness and interest in the Blockchain protocol is in crowdsourcing and distributed ledger applications.

Illustration by Dan Page (2)

At its heart, blockchain is a self-sustaining, peer-to-peer database technology for managing and recording transactions with no central bank or clearinghouse involvement. Because blockchain verification is handled through algorithms and consensus among multiple computers, the system is presumed immune to tampering, fraud, or political control. It is designed to protect against domination of the network by any single computer or group of computers. Participants are relatively anonymous, identified only by pseudonyms, and every transaction can be relied upon. Moreover, because every core transaction is processed just once, in one shared electronic ledger, blockchain reduces the redundancy and delays that exist in today’s banking system.

Companies expressing interest in blockchain include HP, Microsoft, IBM, and Intel. In the financial-services sector, some large firms are forging partnerships with technology-focused startups to explore possibilities. For example, R3, a financial technology firm, announced in October 2015 that 25 banks had joined its consortium, which is attempting to develop a common crypto-technology-based platform. Participants include such influential banks as Citi, Bank of America, HSBC, Deutsche Bank, Morgan Stanley, UniCredit, Société Générale, Mitsubishi UFG Financial Group, National Australia Bank, and the Royal Bank of Canada. Another early experimenter is Nasdaq, whose CEO, Robert Greifeld, introduced Nasdaq Linq, a blockchain-based digital ledger for transferring shares of privately held companies, also in October 2015. (2)

 

References:

  1. Energy Companies look to Blockchain
  2. A Strategist’s Guide to the Blockchain

Hybrid Electric Buildings; A New Frontier for Energy and Grids

.OneMaritimePlaza-300x225 PeakerPlantSanFranHybrid Electric Buildings are the latest in developments for packaged energy storage in buildings which offer several advantages including long-term operational cost savings. These buildings have the flexibility to combine several technologies and energy sources in with a large-scale integrated electric battery system to operate in a cost-effective manner.

San Francisco’s landmark skyscraper, One Maritime Plaza, will become the city’s first Hybrid Electric Building using Tesla Powerpack batteries. The groundbreaking technology upgrade by Advanced Microgrid Solutions (AMS) will lower costs, increase grid and building resiliency, and reduce the building’s demand for electricity from the sources that most negatively impact the environment.

Building owner Morgan Stanley Real Estate Investing hired San Francisco-based AMS to design, build, and operate the project. The 500 kilowatt/1,000 kilowatt-hour indoor battery system will provide One Maritime Plaza with the ability to store clean energy and control demand from the electric grid. The technology enables the building to shift from grid to battery power to conserve electricity in the same way a hybrid-electric car conserves gasoline. (1)

In addition to storage solutions these buildings can offer significant roof area to install solar panel modules and arrays to generate power during the day.  Areas where sunshine is plentiful and electricity rates are high, solar PV and storage combinations for commercial installations are economically attractive.

For utility management, these systems are ideal in expansion of the overall grid, as more micro-grids attach to the utility infrastructure overall supply and resiliency is improved.

In recent developments AMS has partnered with retailer Wal-Mart to provide on-site and “behind the meter” energy storage solutions for no upfront costs.

solar-panels-roof-puerto-rico.png

Figure 2.  Solar Panels on Roof of Wal-Mart, Corporate Headquarters, Puerto Rico (3)

On Tuesday, the San Francisco-based startup announced it is working with the retail giant to install behind-the-meter batteries at stores to balance on-site energy and provide megawatts of flexibility to utilities, starting with 40 megawatt-hours of projects at 27 Southern California locations.

Under the terms of the deal, “AMS will design, install and operate advanced energy storage systems” at the stores for no upfront cost, while providing grid services and on-site energy savings. The financing was made possible by partners such as Macquarie Capital, which pledged $200 million to the startup’s pipeline last year.

For Wal-Mart, the systems bring the ability to shave expensive peaks, smooth out imbalances in on-site generation and consumption, and help it meet a goal of powering half of its operations with renewable energy by 2025. Advanced Microgrid Solutions will manage its batteries in conjunction with building load — as well as on-site solar or other generation — to create what it calls a “hybrid electric building” able to keep its own energy costs to a minimum, while retaining flexibility for utility needs.

The utility in this case is Southern California Edison, a long-time AMS partner, which “will be able to tap into these advanced energy storage systems to reduce demand on the grid as part of SCE’s groundbreaking grid modernization project,” according to Tuesday’s statement. This references the utility’s multibillion-dollar grid modernization plan, which is now before state regulators.  (2)

References:

  1. San Francisco’s First Hybrid Electric Building – Facility Executive, June 28, 2016
    https://facilityexecutive.com/2016/06/skyscraper-will-be-san-franciscos-first-hybrid-electric-building/

  2. Wal-Mart, Advanced Microgrid Solutions to Turn Big-Box Stores Into Hybrid Electric Buildings, GreenTech Media, April 11, 2017  https://www.greentechmedia.com/articles/read/wal-mart-to-turn-big-box-stores-into-hybrid-electric-buildings?utm_source=Daily&utm_medium=Newsletter&utm_campaign=GTMDaily

  3. Solar Panels on Wal-Mart Roof  http://corporate.walmart.com/_news_/photos/solar-panels-roof-puerto-rico

What Does Moist Enthalpy Tell Us?

“In terms of assessing trends in globally-averaged surface air temperature as a metric to diagnose the radiative equilibrium of the Earth, the neglect of using moist enthalpy, therefore, necessarily produces an inaccurate metric, since the water vapor content of the surface air will generally have different temporal variability and trends than the air temperature.”

Climate Science: Roger Pielke Sr.

In our blog of July 11, we introduced the concept of moist enthalpy (see also Pielke, R.A. Sr., C. Davey, and J. Morgan, 2004: Assessing “global warming” with surface heat content. Eos, 85, No. 21, 210-211. ). This is an important climate change metric, since it illustrates why surface air temperature alone is inadequate to monitor trends of surface heating and cooling. Heat is measured in units of Joules. Degrees Celsius is an incomplete metric of heat.

Surface air moist enthalpy does capture the proper measure of heat. It is defined as CpT + Lq where Cp is the heat capacity of air at constant pressure, T is air temperature, L is the latent heat of phase change of water vapor, and q is the specific humidity of air. T is what we measure with a thermometer, while q is derived by measuring the wet bulb temperature (or, alternatively, dewpoint…

View original post 203 more words

Site C Dam Construction in BC – A Political Water Grab?

Mega projects grab headlines and provide many photo opportunities for politicians.  Since the construction of the depression era Hoover Dam, these massive construction projects have historically provided for jobs and opportunity when the economy is slow.  However, some questions remain, such as; are these projects in everyone’s best interests, what are we losing, and is there a better way to accomplish our goals?

“‘Water grabbing’ refers to a situation in which public or private entities are able to take control of, or reallocate, precious water resources for profit or for power — and at the expense of local communities and the ecosystems on which their livelihoods are based.

The effects have been well-documented: examples include families driven away from their villages to make room for mega dams, privatization of water sources that fails to improve access for the public, and industrial activity that damages water quality.”

[…]

“…hydropower comprises about 70 per cent of the world’s renewable energy mix, and guarantees a lower amount of total emissions than fossil fuel plants, its overall impacts are not always positive. This is especially the case when dams are not planned with an emphasis on the impacts on people and the environment.

In North America, many dams built in the 1980s are now being demolished because of their impacts on fish species such as salmon. In some cases they are replaced with more modern dams that do not require building large-scale reservoirs.” (1)

A Short Political History of the Site C Dam

Site C dam construction

Figure 1.  Construction on the Site C dam on the Peace River in the fall of 2016. Photo: Garth Lenz. (2)

“On May 10, 1990, the Vancouver Sun reported remarks made by then Energy Minister Jack Davis at an Electric Energy Forum: “Power projects initiated by B.C. Hydro will be increasingly guided by environmental concerns because of mounting public pressure.” Noting the province’s abundance of power sources, he said: “We have the scope to be different.”

However, during a 1991 Social Credit party leadership campaign the winner, Rita Johnston declared in her policy statement that she wanted to accelerate construction of the “$3 billion” dam. Johnston’s leadership was brief because the Socreds were defeated in October 1991.

In 1993, the dam was declared dead by then BC Hydro CEO Marc Eliesen. Site C is dead for two reasons,” Eliesen said. “The fiscal exposure is too great … the dam is too costly. Also it is environmentally unacceptable.”

Despite these twists and turns, B.C. Hydro’s staff worked diligently to keep the dam alive.

Fast forward to April 19, 2010, when then B.C. Liberal Premier Gordon Campbell made his announcement that Site C was on again, now branded as a “clean energy project” and an important part of “B.C.’s economic and ecological future.”

Campbell claimed the dam would power 460,000 new homes and repeated the mantra of an increasing power demand of 20 to 40 per cent in the following 20 years.

In the ensuing seven years since the 2010 announcement, power demand has stayed virtually the same, despite BC Hydro’s forecast for it to climb nearly 20 per cent during that time. The reality is B.C.’s electricity demand has been essentially flat since 2005, despite ongoing population growth.

Campbell resigned in 2011 amidst uproar over the Harmonized Sales Tax (HST), opening the field for a leadership race, which Christy Clark won. That brings us to the May 2013 election, during which Clark pushed liquefied natural gas (LNG) exports as the solution to B.C.’s economic woes. With the LNG dream came a potential new demand for grid electricity, making Site C even more of a hot topic.

Four years on from Clark’s pronouncement there are no LNG plants up and running, despite her promise of thousands of jobs. Without a market for Site C’s power, Clark has started ruminating about sending it to Alberta, despite a lack of transmission or a clear market.

Oxford University Professor Bent Flyvbjerg has studied politicians’ fascination with mega projects, describing the rapture they feel building monuments to themselves: “Mega projects garner attention, which adds to the visibility they gain from them.”

This goes some way to explaining the four-decade obsession with building the Site C dam, despite the lack of clear demand for the electricity. (2)

 

References:

  1.  Water and power: Mega-dams, mega-damage?
    http://www.scidev.net/global/water/data-visualisation/water-power-mega-dams-mega-damage.html
  2. Four Decades and Counting: A Brief History of the Site C Dam https://www.desmog.ca/2017/03/23/four-decades-and-counting-brief-history-site-c-dam

Benchmarking Buildings by Energy Use Intensity (EUI)

There are many metrics and measurements when it comes to evaluating energy as we use it in our daily lives.  In order to compare between different sources or end uses we often have to make conversions in our terms so that our comparisons are equitable.  This may be further complicated as different countries often use different standards of measure, however, we will convert to common units.

Benchmarking

Benchmarking is the practice of comparing the measured performance of a device, process, facility, or organization to itself, its peers, or established norms, with the goal of informing and motivating performance improvement. When applied to building energy use, benchmarking serves as a mechanism to measure energy performance of a single building over time, relative to other similar buildings, or to modeled simulations of a reference building built to a specific standard (such as an energy code). (1)

Benchmarking is a common practice in buildings to establish existing consumption rates and to identify areas that require improvement and to help prioritize improvement projects.  These benchmarks can be established for a building, system within a building, or even a larger campus, facility or power source.  Usually an energy or facility manager will determine energy consumption over a fixed period of time, 1 to 3 years, and compare it to similar facilities.  Normalized by gross square footage of the building the EUI is usually expressed as kBtu/sf per year.

Energy Intensity (EI) of a Country

Figure 1:  Energy Intensity of different economies The graph shows the amount of energy it takes to produce a US $ of GNP for selected countries. (2)

Not to be confused with Energy Use Intensity, Energy Intensity is an economic measure of energy use normalized by the GDP of a country and is considered a measure of a Nation’s Energy Efficiency.  Countries with a high EI have a higher cost to convert energy into GDP, whereas countries with low EI have lower costs of converting energy into GDP.  Many factors contribute to the EI value, including climate, energy sources and  economic productivity. (2)

Energy Use Intensity (EUI)

The EUI of a building includes the electrical power use and heating fuel consumption for heating and hot water generation.  Many facilities require different loads according to their primary use or function, including cooling and refrigeration.  For the comfort of occupants electricity is needed for lighting and plug loads to meet the functioning needs of the equipment in the facility.  Heating, ventilation and air conditioning (HVAC) may require electricity or another fuel such as natural gas.  Hot water may be generated with electricity or a fuel.  A site may also have solar PV or hot water, wind power, and daylighting programs.  There are also many strategies which may be employed by building operators to reduce loads and energy consumption including controls, storage, micro-grid, purchasing offsets, etc.

When comparing buildings, people not only talk about total energy demands, but also talk about “energy use intensity” (EUI).  Energy intensiveness is simply energy demand per unit area of the building’s floorplan, usually in square meters or square feet. This allows you to compare the energy demand of buildings that are different sizes, so you can see which performs better.

EUI is a particularly useful metric for setting energy use benchmarks and goals. The EUI usually varies quite a bit based on the building program, the climate, and the building size. (3)

Image result

Figure 2.  Typical EUI for selected buildings.  This graph is based on research EPA conducted on more than 100,000 buildings (4)

Site Energy vs Source Energy

As we go forward into the future, it is rather unclear how current events will affect the international agreements on reducing carbon consumption.  However, generally speaking, renewable energy sources are seen to becoming more economic for power production.  For many facilities this means that supplementing existing grid sources for power with on-site power production is making economic sense.  Future building improvements may include sub-systems, batteries and energy storage schemes, renewable sources or automated or advanced control systems to reduce reliance on grid sourced power.

The energy intensity values in the tables above only consider the amount of electricity and fuel that are used on-site (“secondary” or “site” energy). They do not consider the fuel consumed to generate that heat or electricity. Many building codes and some tabulations of EUI attempt to capture the total impact of delivering energy to a building by defining the term  “primary” or “source” energy which includes the fuel used to generate power on-site or at a power plant far away.

When measuring energy used to provide thermal or visual comfort, site energy is the most useful measurement. But when measuring total energy usage to determine environmental impacts, the source energy is the more accurate measurement.

Sometimes low on-site energy use actually causes more energy use upstream.  For example, 2 kWh of natural gas burned on-site for heat might seem worse than 1 kWh of electricity used on-site to provide the same heating with a heat pump.  However, 1 kWh of site electricity from the average US electrical grid is equal to 3.3 kWh of source energy, because of inefficiencies in power plants that burn fuel for electricity, and because of small losses in transmission lines.  So in fact the 2 kWh of natural gas burned on site is better for heating. The table below provides the conversion factors assumed by the US Environmental Protection Agency for converting between site and source energy. (3)

References:

(1) BUILDING ENERGY USE BENCHMARKING  https://energy.gov/eere/slsc/building-energy-use-benchmarking

(2) ENERGY INTENSITY  https://en.wikipedia.org/wiki/Energy_intensity

(3) MEASURING BUILDING ENERGY USE  https://sustainabilityworkshop.autodesk.com/buildings/measuring-building-energy-use

(4) WHAT IS ENERGY USE INTENSITY (EUI)?  https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/use-portfolio-manager/understand-metrics/what-energy

Aluminum, a Quantum Leap in Renewable Energy Storage

The future for the metal aluminum has never looked better, for the great investment it represents as a multi-faceted energy efficiency lending material, electrical energy storage medium (battery), and for the advancement of renewable energy sources.  These are spectacular claims, and yet in 1855 aluminum was so scarce it sold for about 1200 $/Kg (1) until metallurgists Hall & Heroult invented the modern smelting process over 100 years ago (2).

Image result for aluminum electrolysis

Figure 1.  Schematic of Hall Heroult Aluminum Reduction Cell (3)

 

Aluminum is an energy intensive production process.  High temperatures are required to melt aluminum to the molten state.  Carbon electrodes are used to melt an alchemical mixture of alumina with molten cryolite, a naturally occurring mineral.  The cryolite acts as an electrolyte to the carbon anode and cathodes.  Alumina (Al2O3) also known as aluminum oxide or Bauxite is fed into the cell and dissolved into the cryolite, over-voltages reduce the Al2O3 into molten aluminum which pools at the bottom of the cell and is tapped out for further refining.

Aluminum Smelting Process as a Battery

The smelting of Aluminum is a reversible electrolytic reaction, and with modifications to current plant design it is possible to convert the process to provide energy storage which can  be tapped and supplied to the electrical grid when required.  According to the research the biggest challenge to this conversion process is to maintain heat balances of the pots when discharging energy to prevent freeze-up of the cells.  Trimet Aluminum has overcome this problem by incorporating shell heat-exchange technology to the sides of the cell to maintain operating temperatures.  Trial runs with this technology have been positive where plans are to push the technology to +/- 25% energy input/output.  If this technology is applied to all 3 Trimet plants in Germany, it is claimed that up to 7700 MWh of electrical storage is possible (4).

Trimet Aluminum SE, Germany’s largest producer of the metal, is experimenting with using vast pools of molten aluminum as virtual batteries. The company is turning aluminum oxide into aluminum by way of electrolysis in a chemical process that uses an electric current to separate the aluminum from oxygen. The negative and positive electrodes, in combination with the liquid metal that settles at the bottom of the tank and the oxygen above, form an enormous battery.

By controlling the rate of electrolysis, Trimet has been able to experiment with both electricity consumption and storage.  By slowing down the electrolysis process, the plant is able to adjust its energy consumption up and down by roughly 25 percent.  This allows the plant to store power from the grid when energy is cheap and abundant and resell power when demand is high and supply is scarce. (5)

Related image

Figure 2. TRIMET Aluminium SE Hamburg with emission control technology (6)

 

Image result

Figure 3.  Rio Tinto Alcan inaugurates new AP60 aluminum smelter in Quebec (7)

Aluminum as a Material and it’s Energy Efficiency Properties

Aluminum and it’s alloys generally have high strength-to-weight ratio’s and are often specified in the aircraft industry where weight reduction is critical.  A plane made of steel would require more energy to fly,  as the metal is heavier for a given strength.  For marine vessels, an aluminum hull structure, built to the same standards, weighs roughly 35% to 45% less than the same hull in steel (8). Weight reduction directly converts to energy savings as more energy would be required to propel the aircraft.

Other modes of transportation, including automobiles, trucking, and rail transport may similarly also benefit from being constructed of lighter materials, such as aluminum.  Indeed this would continue the long-standing trend of weight reduction in the design of vehicles.  The recent emergence of electric vehicles (EV’s) have required weight reduction to offset the high weight of batteries which are necessary for their operations.  The weight reduction translates into longer range and better handling.

Image result

Figure 4.  Tesla Model S (9)

 

In the 1960s, aluminium was used in the niche market for cog railways. Then, in the 1980s, aluminium emerged as the metal of choice for suburban transportation and high-speed trains, which benefited from lower running costs and improved acceleration. In 1996, the TGV Duplex train was introduced, combining the concept of high speed with that of optimal capacity, transporting 40% more passengers while weighing 12% less than the single deck version, all thanks to its aluminium structure.

Today, aluminium metros and trams operate in many countries. Canada’s LRC, France’s TGV Duplex trains and Japan’s Hikari Rail Star, the newest version of the Shinkansen Bullet train, all utilize large amounts of aluminium.  (10)

Image result

Figure 5.   Image of Japanese Bullet Train  (11)

Aluminum For Renewable Energy

One of the biggest criticisms against renewable technologies, such as solar and wind has been that they are intermittent, and not always available when demand demand for energy is high.  Even in traditional grid type fossil fuel plants it has been necessary to operate “peaker plants” which provide energy during peak times and seasons.

In California, recent technological breakthroughs in battery technology have been seen as a means of providing storage options to replace power plants for peak operation. However, there remains skepticism that battery solutions will be able to provide the necessary storage capacity needed during these times (12).  The aluminum smelter as an energy provider during these high demand times may be the optimum solution needed in a new age renewables economy.

The EnPot technology has the potential to make the aluminium smelting industry not only more competitive, but also more responsive to the wider community and environment around it, especially as nations try to increase the percentage of power generated from renewable sources.

The flexibility EnPot offers smelter operators can allow the aluminium industry to be part of the solution of accommodating increased intermittency.  (13)

References:

(1)  http://www.aluminum-production.com/aluminum_history.html

(2)  http://www.aluminum-production.com/Basic_functioning.html

(3)  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532000000300008

(4)  The ‘Virtual Battery‘ – Operating an Aluminium Smelter with Flexible Energy Input.  https://energiapotior.squarespace.com/s/Enpot-Trimet-LightMetals2016.pdf

(5)  http://www.metalsproclimate.com/metals-pro-climate/best-practice/reduction-of-pfc-process-emissions

(6) http://www.sauder.ubc.ca/Faculty/Research_Centres/Centre_for_Social_Innovation_and_Impact_Investing/Programs/Clean_Capital/Clean_Capital_News_Archive_2014/Aluminum_smelters_could_act_as_enormous_batteries

(7)  http://www.canadianmetalworking.com/2014/01/rio-tinto-alcan-inaugurates-new-ap60-aluminum-smelter-in-quebec/

(8)  http://www.kastenmarine.com/alumVSsteel.htm

(9)  http://www.greencarreports.com/news/1077672_2012-tesla-model-s-is-aluminum-its-secret-weapon

(10)  http://transport.world-aluminium.org/en/modes/trainssubways.html

(11)  http://www.aluminiumleader.com/focus/aluminium_carriages_help_provide_high_speed_rail_service/

(12)  http://www.bloomberg.com/news/articles/2015-12-22/batteries-gaining-favor-over-gas-peaker-plants-in-california

(13)  http://www.energiapotior.com/the-virtual-battery

Transitioning Oil & Gas Wells to Renewable Geothermal Energy

Infinity Turbine 2016 ROT IT50

Figure 1:  Radial Outflow Turbine Generator – Organic Rankine Cycle – ORC Turbine (1)

Existing oil and gas wells offer access to untapped sources of heat which can be converted to electricity or used for other energy intensive purposes.  This includes many abandoned wells, which can be reactivated as power sources.  These wells, in many cases “stranded assets” have been drilled, explored, and have roads built for access.  This makes re-utilization of existing infrastructure cost-effective while minimizing harm to the environment associated with exploration.

In a recently published article in Alberta Oil, an oil & gas industry magazine they point out many of the benefits of converting existing and abandoned wells to geothermal energy.

A recent Continental Resources-University of North Dakota project in the Williston Basin is producing 250 kW of power from two water source wells. The units fit into two shipping containers, and costs US$250,000. This type of micro-generation is prospective in Alberta, and a handful of areas also have potential for multi-MW baseload power production.

In addition to producing power, we can use heat for farming, greenhouses, pasteurization, vegetable drying, brewing and curing engineered hardwood. Imagine what Alberta’s famously innovative farmers and landowners would accomplish if they were given the option to use heat produced from old wells on their properties. Northern communities, where a great many oil and gas wells are drilled nearby, can perhaps reap the most benefits of all. Geothermal can reduce reliance on diesel fuel, and provide food security via wellhead-sourced, geothermally heated, local greenhouse produce. (2)

Water can be recirculated by pumps to extract heat from the earth, and through heat exchangers be used as a source of energy for various forms of machines designed to convert low grade waste heat into electricity.  The Stirling Cycle engine is one such mechanical device which can be operated with low grade heat.  However recent developments in the Organic Rankine Cycle (ORC) engine seem to hold the greatest promise for conversion of heat to electricity in these installations.

In a “boom or bust” industry subject to the cycles of supply and demand coupling a new source of renewable energy to resource extraction makes sense on many fronts.  It could be an economic stimulus not only to the province of Alberta, but throughout the world where oil and gas infrastructure exists, offering new jobs and alternative local power sources readily available.

References:

(1)  http://www.infinityturbine.com/

(2)  http://www.albertaoilmagazine.com/2016/10/geothermal-industry-wants-abandoned-wells/

Related Blog Posts:

  1. https://duanetilden.com/2016/01/14/alberta-energy-production-and-a-renewable-future/
  2. https://duanetilden.com/2014/12/21/renewable-geothermal-power-with-oil-and-gas-coproduction-technology-may-be-feasible/
  3. https://duanetilden.com/2015/07/25/a-new-era-for-geothermal-energy-in-alberta/
  4. https://duanetilden.com/2015/07/27/oil-well-waste-water-used-to-generate-geothermal-power/
  5. https://duanetilden.com/2013/10/29/supercritical-co2-refines-cogeneration-for-industry/

The End of Oil Domination? – German Government Votes to Ban Sales of ICE Vehicles by 2030

aid_diesel-2

Figure 1:  Chart showing recent drop in Diesel Car sales, AID Newsletter

 

“[…] Germany’s Bundesrat has passed a resolution to ban the internal combustion engine starting in 2030,Germany’s Spiegel Magazin writes. Higher taxes may hasten the ICE’s departure.

An across-the-aisle Bundesrat resolution calls on the EU Commission in Brussels to pass directives assuring that “latest in 2030, only zero-emission passenger vehicles will be approved” for use on EU roads. Germany’s Bundesrat is a legislative body representing the sixteen states of Germany. On its own, the resolution has no legislative effect. EU type approval is regulated on the EU level. However, German regulations traditionally have shaped EU and UNECE regulations.

EU automakers will be alarmed that the resolution, as quoted by der Spiegel, calls on the EU Commission to “review the current practices of taxation and dues with regard to a stimulation of emission-free mobility.”

  • “Stimulation of emission-free mobility” can mean incentives to buy EVs. Lavish subsidies doled out by EU states have barely moved the needle so far.
  • A “review the current practices of taxation and dues” is an unambiguously broad hint to end the tax advantages enjoyed by diesel in many EU member states. The lower price of diesel fuel, paired with its higher mileage per liter, are the reason that half of the cars on Europe’s roads are diesel-driven. Higher taxes would fuel diesel’s demise. […]

With diesel already on its tipping point in Europe, higher taxes and increased prices at the pump would be the beginning of the fuel’s end. As evidenced at the Paris auto show, the EU auto industry seems to be ready to switch to electric power, and politicians just signaled their willingness to force the switch to zero-emission, if necessary. Environmentalists undoubtedly will applaud this move, and the sooner diesel is stopped from poisoning our lungs with cancer-causing nitrous oxide, the better. Cult-like supporters of electric carmaker Tesla will register the developments with trepidation.

When EU carmakers are forced by law to produce the 13+ million electric cars the region would need per year, the upstart carmaker would lose its USP, and end up as roadkill. Maybe even earlier. Prompted by a recent accident on a German Autobahn, experts of Germany’s transport ministry declared Tesla’s autopilot a “considerable traffic hazard,” Der Spiegel wrote yesterday.Transport Minister Dobrindt so far stands between removing Germany’s 3,000 Tesla cars from the road, the magazine writes. Actually, until the report surfaced, the minister’s plan was to subsidize Autopilot research in Germany’s inner cities. “Let’s hope no Tesla accident happens,” the minister’s bureaucrats told Der Spiegel. It happened, but no-one died.”

Via Forbes:  http://bit.ly/2e8HSQf