Oilsands and Fossil Fuels Receive Major Blow Due to Paris Agreement

LONDON — Europe’s largest bank HSBC said on Friday it would mostly stop funding new coal power plants, oilsands and arctic drilling, becoming the latest in a long line of investors to shun the fossil fuels.

Other large banks such as ING and BNP Paribas have made similar pledges in recent months as investors have mounted pressure to make sure bank’s actions align with the Paris Agreement, a global pact to limit greenhouse gas emissions and curb rising temperatures.

“We recognize the need to reduce emissions rapidly to achieve the target set in the 2015 Paris Agreement… and our responsibility to support the communities in which we operate,” Daniel Klier, group head of strategy and global head of sustainable finance, said in a statement.

via Europe’s biggest bank HSBC says it will no longer finance oilsands projects — Financial Post

Advertisement

A simple model to make sense of the proliferation of distributed ledger, smart contract and cryptocurrency projects

Richard Gendal Brown

Just when I think I understand the cryptocurrency/block chain space, I realize I didn’t understand anything at all

Four recent events have made me realize that I don’t understand this space anywhere near as well as I thought I did.   But that’s good: it means I’ve been forced to come up with a new mental model to explain to myself how all these projects relate to each other.

TL;DR: the two questions to ask about a “fiduciary code” requirement are: who do I need to trust and what am I trusting them about?

Who do I trust

A simple model to capture the essential differences between some consensus platforms

The rest of this article describes the four events that influenced me to draw it.

Event 1: Nick Szabo’s “The Dawn of Trustworthy Computing” Article

In his recent article, Nick Szabo introduces two really helpful terms to explain what makes systems like Bitcoin particularly noteworthy.

View original post 1,177 more words

Hybrid Electric Bus uses Hydrogen as Fuel

“[…] According to Paulo Emilio, this is the most efficient hydrogen bus in the world. “A European company tested a hydrogen bus in ten cities, which consumed 25 kilos of hydrogen for each 100 kilometers; this month, the same company launched an improved version, with 14 kilos of hydrogen consumed for each 100 kilometers” where as “our bus consumes just 5 kilos of hydrogen”, he says. […]”

via Literally, a green bus

What Does Moist Enthalpy Tell Us?

“In terms of assessing trends in globally-averaged surface air temperature as a metric to diagnose the radiative equilibrium of the Earth, the neglect of using moist enthalpy, therefore, necessarily produces an inaccurate metric, since the water vapor content of the surface air will generally have different temporal variability and trends than the air temperature.”

Climate Science: Roger Pielke Sr.

In our blog of July 11, we introduced the concept of moist enthalpy (see also Pielke, R.A. Sr., C. Davey, and J. Morgan, 2004: Assessing “global warming” with surface heat content. Eos, 85, No. 21, 210-211. ). This is an important climate change metric, since it illustrates why surface air temperature alone is inadequate to monitor trends of surface heating and cooling. Heat is measured in units of Joules. Degrees Celsius is an incomplete metric of heat.

Surface air moist enthalpy does capture the proper measure of heat. It is defined as CpT + Lq where Cp is the heat capacity of air at constant pressure, T is air temperature, L is the latent heat of phase change of water vapor, and q is the specific humidity of air. T is what we measure with a thermometer, while q is derived by measuring the wet bulb temperature (or, alternatively, dewpoint…

View original post 203 more words

Twelve Reasons Why Globalization is a Huge Problem

Globalization seems to be looked on as an unmitigated “good” by economists. Unfortunately, economists seem to be guided by their badly flawed models; they miss  real-world problems. In …

Source: Twelve Reasons Why Globalization is a Huge Problem

The “fuel” that’s helping America fight climate change isn’t natural gas

Power for the People VA

You’ve heard the good news on climate: after a century or more of continuous rise, U.S. CO2 emissions have finally begun to decline, due largely to changes in the energy sector. According to the Energy Information Agency (EIA), energy-related CO2 emissions in 2015 were 12% below their 2005 levels. The EIA says this is “because of the decreased use of coal and the increased use of natural gas for electricity generation.”

Is the EIA right in making natural gas the hero of the CO2 story? Hardly. Sure, coal-to-gas switching is real. But take a look at this graph showing the contributors to declining carbon emissions. Natural gas displacement of coal accounts for only about a third of the decrease in CO2 emissions.

Courtesy of the Sierra Club Beyond Coal Campaign, using data from the Energy Information Agency. Courtesy of the Sierra Club Beyond Coal Campaign, using data from the Energy Information Agency.

By far the biggest driver of the declining emissions is energy efficiency. Americans…

View original post 746 more words

Urbane Legends

Is Climate Change an Urban Legend?

US Issues

By Willis Eschenbach – Re-Blogged From http://www.WattsUpWithThat.com

So we were sitting around the fire at the fish camp on the Colombia a few days ago, and a man said “Did you hear about the scientific study into meat preservatives?” We admitted our ignorance, and he started in. The story was like this:

“A few years ago there was a study done by some University, I can’t remember which one, but it was a major one. What they did was to examine the corpses of people who had died in Siberia, and those that had died in Washington State. Now of course the people in Siberia weren’t eating meat preservatives during their lives, and the Washington people were eating them. And when they dug up the graves and looked at the bodies, guess what they found?” 

the killer in the back seatUrban Legend: The Killer In The Back Seat SOURCE 

View original post 1,264 more words

There Are 9.93 Million More Government Workers Than Manufacturing Workers

STRAIGHT LINE LOGIC

An interesting chart from Anthony B. Sanders at davidstockmanscontracorner.com:

The August jobs report was filled with some interest factoids, like there are now 9.93 million government workers than there are manufacturing workers.

That is a ratio of 1.81 government workers for every manufacturing worker.

Such was not always the case. But a variety of factors such as labor cost differentials, EPA regulations and taxes had led to manufacturing jobs to be sent overseas.

Now a 1.81 government to manufacturing employment ratio is called OVERHEAD. And you wonder why high paying manufacturing jobs are fleeing to other countries?

http://davidstockmanscontracorner.com/there-are-9-93-million-more-government-workers-than-manufacturing-workers/

View original post

Energy Efficiency Financing for Existing Buildings in California

Much of our efforts to reduce carbon emissions involves fairly complicated and advanced technologies. Whether it’s solar panels, batteries, flywheels, or fuel cells, these technologies have typically required public support to bring them to scale at a reasonable price, along with significant regulatory or legal reforms to accommodate these new ways of doing old things, […]

To recommend policies to boost this capital market financing for energy retrofits, UC Berkeley and UCLA Law are today releasing a new report “Powering the Savings:How California Can Tap the Energy Efficiency Potential in Existing Commercial Buildings.” The report is the 17th in the two law schools’ Climate Change and Business Research Initiative, generously supported by Bank of America since 2009.

The report describes ways that California could unlock more private investment in energy efficiency retrofits, particularly in commercial buildings.  This financing will flow if there’s a predictable, long-term, measured and verified amount of savings that can be directly traced to energy efficiency measures.  New software and methodologies can now more accurately perform this task.  They establish a building’s energy performance baseline, calibrating for a variety of factors, such as weather, building use, and occupancy changes.  That calibrated or “dynamic” baseline can then form the basis for calculating the energy savings that occur due specifically to efficiency improvements.

But the state currently lacks a uniform, state-sanctioned methodology and technology standard, so utilities are reluctant to base efficiency incentives or programs without regulatory approval to use these new methods.  The report therefore recommends that energy regulators encourage utilities to develop aggressive projects based on these emerging metering technologies that can ultimately inform a standard measurement process and catalyze “pay-for-performance” energy efficiency financing, with utilities able to procure energy efficiency savings just like they were a traditional generation resource. […]

via Solving The Energy Efficiency Puzzle — Legal Planet