Measuring and Monitoring Energy Efficiency

Defining Energy Efficiency

To begin, let us ask what is energy efficiency, what are it’s components and how is it measured.  To make comparisons we need to gather data using measures relevant to the industry in question, also to the input forms of energy, waste streams and the useful work performed.  In the case of a building we may use meters to measure consumption or utility bills and compare changes in consumption rates over time.

To an engineer, energy efficiency is the ratio of useful work over total energy input.  For example, a room air conditioner’s efficiency is measured by the energy efficiency ratio (EER). The EER is the ratio of the cooling capacity (in British thermal units [Btu] per hour) to the power input (in watts).

On a grander scale we may be looking improvements over an industry or sector, changing fuel types in a utility such as the conversion of a coal plant to the production of power fueled by natural gas to reduce the carbon load on the environment.  Efficiency may be measured by different metrics depending on the result sought and may include the environmental impact of waste streams.

EnergyEfficientEconomy

Figure 1:  Historical Energy Use Graph  (1)

Whatever the exact yearly investment figure, the historical economic impact of efficiency is quite clear. As the graph () shows, efficiency has provided three times more of the economic services than new production since 1970:

The blue line illustrates demand for energy services (the economic activity associated with energy use) since 1970; the solid red line shows energy use; and the green line illustrates the gain in energy efficiency. While demand for energy services has tripled in the last four decades, actual energy consumption has only grown by 40 percent. Meanwhile, the energy intensity of our economy has fallen by half.

The area between the solid red line and the blue line represents the amount of energy we did not need to consume since 1970; the area between the dashed red line and the solid red line indicates how much energy we consumed since 1970.

The chart shows that energy efficiency met nearly three quarters of the demand for services, while energy supply met only one quarter.

“One immediate conclusion from this assessment is that the productivity of our economy may be more directly tied to greater levels of energy efficiency rather than a continued mining and drilling for new energy resources,” wrote Laitner. (1)

As noted in an article by the EIA;  The central question in the measurement of energy efficiency may really be “efficient with respect to what?” (2)  In general terms when discussing energy efficiency improvements we mean to perform more of a function with the same or less energy or material input.

Energy Efficiency Measures

Energy efficiency measures are those improvement opportunities which exist in a system which when taken will achieve the goals of achieving greater performance.  For example refer to Table 1 of Energy Efficiency Measures which can be effectively reduce energy consumption and provide an ROI of 5 or less years when applied to the commercial refrigeration industry.

energy efficient refrigeration4.jpg

Table 1:  Commercial Refrigeration Energy Efficiency Measures (3)


Government Action on Energy Efficiency

Energy efficiency has been put forward as one of the most effective methods in efforts to address the issue of Climate Change.  Recently, on February 19, 2015, President Obama signed Executive Order (EO) 13693.

“Since the Federal Government is the single largest consumer of energy in the Nation, Federal emissions reductions will have broad impacts.  The goals of EO 13693 build on the strong progress made by Federal agencies during the first six years of the Administration under President Obama’s 2009 Executive Order on Federal Leadership on Environmental, Energy and Economic Performance, including reducing Federal GHG emissions by 17 percent — which helped Federal agencies avoid $1.8 billion in cumulative energy costs — and increasing the share of renewable energy consumption to 9 percent.  

With a footprint that includes 360,000 buildings, 650,000 fleet vehicles, and $445 billion spent annually on goods and services, the Federal Government’s actions to reduce pollution, support renewable energy, and operate more efficiently can make a significant impact on national emissions. This EO builds on the Federal Government’s significant progress in reducing emissions to drive further sustainability actions through the next decade. In addition to cutting emissions and increasing the use of renewable energy, the Executive Order outlines a number of additional measures to make the Federal Government’s operations more sustainable, efficient and energy-secure while saving taxpayer dollars. Specifically, the Executive Order directs Federal agencies to:

– Ensure 25 percent of their total energy (electric and thermal) consumption is from clean energy sources by 2025.

– Reduce energy use in Federal buildings by 2.5 percent per year between 2015 and 2025.

– Reduce per-mile GHG emissions from Federal fleets by 30 percent from 2014 levels by 2025, and increase the percentage of zero emission and plug in hybrid vehicles in Federal fleets.

– Reduce water intensity in Federal buildings by 2 percent per year through 2025. ” (4)


Summary

Energy efficiency has gained recognition as a leading method to reduce the emissions of GHG’s seen to be the cause of climate change.  Under scrutiny, we find that there are different measures of efficiency across different industry, fuel types and levels.  For example on a micro-level, the functioning of a system may be improved by including higher efficiency components in it’s design, such as motors and pumps.

However, there are other changes which can improve efficiency.  Adding automated computer controls can improve a system level efficiency.   Utilities may change from coal burning to natural gas fired power plants, or industry may convert to a process to include for co-generation.  Battery storage and other technological improvements may come along to fill in the gap.

Historically Energy Efficiency measures have proven to be gaining ground by employing people with the savings earned when applying measures to reduce consumption.  These savings reverberate through the economy in a meaningful way, by reducing the need for the construction of more power plants as one example as we on an individual level.  We consume less energy, and using higher efficiency electronic equipment, and other energy savings measures at a consumer level, our communities are capable of more growth with existing energy supplies.

jEnergy production and consumption, as well as population growths also arise to other issues related to energy consumption, such as water consumption, water waste, and solid material waste.  Building with sustainable materials which promote healthy living environments is gaining importance as we understand the health impacts of a building’s environment on the health and well-being of the occupants.  Energy efficiency in the modern era, as we see from recent government mandates and sustainability programs, such as LEED’s for one, also includes for reductions in water intensity and incorporation of renewable energy programs as an alternative to increasing demand on existing utilities.

 

 

Related Blog Posts:

References

  1. http://www.greentechmedia.com/articles/read/report-u.s.-energy-efficiency-is-a-bigger-industry-than-energy-supply
  2. http://www.eia.gov/emeu/efficiency/measure_discussion.htm
  3. http://www.nwfpa.org/nwfpa.info/component/content/article/52-refrigeration/284-energy-efficient-refrigeration-systems
  4. https://www.whitehouse.gov/administration/eop/ceq/sustainability
Advertisements

Apple Creates Clean Energy Subsidiary

“Apple has created a subsidiary to sell the excess electricity generated by its hundreds of megawatts of solar projects. The company, called Apple Energy LLC, filed a request with the Federal Energy Regulatory Commission to sell power on wholesale markets across the US.

The company has announced plans for 521 megawatts of solar projects globally. It’s using that clean energy to power all of its data centers, as well as most of its Apple Stores and corporate offices. In addition, it has other investments in hydroelectric, biogas, and geothermal power, and looks to purchase green energy off the grid when it can’t generate its own power. In all, Apple says it generates enough electricity to cover 93 percent of its energy usage worldwide.

But it’s possible that Apple is building power generation capacity that exceeds its needs in anticipation of future growth. In the meantime, selling off the excess helps recoup costs by selling to power companies at wholesale rates, which then gets sold onward to end customers.

It’s unlikely that Apple, which generated more than $233 billion in revenue in fiscal 2015, will turn power generation into a meaningful revenue stream — but it might as well get something out of the investment. The company issued $1.5 billion in green bonds earlier this year to finance its clean energy projects.” (2)

Related Articles:

References:

  1. http://inhabitat.com/apple-is-launching-a-new-company-to-sell-surplus-solar-energy/apple-cupertino-hq-foster-partners-1/
  2. http://www.theverge.com/2016/6/9/11896502/apple-clean-solar-energy-subsidiary-wholesale

The Smart Grid – Modern Electrical Infrastructure

When we talk about the emerging Smart Grid there comes with the topic an array of exciting and new technologies; Micro-Grids, Distributed Generation, Smart Meters, Load Shifting, Demand Response, Electric Vehicles with Battery Storage for Demand Response, and more.  Recent development in Renewable Energy sources has been driven by concerns over Climate Change, allowing for unprecedented growth in residential and commercial PV Solar Panel installations.

redwoodhighschool.jpg

Figure 1:  Redwood High School in Larkspur, CA installed a 705kW SunPower system that’s projected to save $250,000 annually. The carports include EV charging stations for four cars. (1)

Climate Change and burning of fossil fuels are hot topics in the world. Most recently the city of San Francisco has mandated the installation of solar panels on all new buildings constructed under 10 storeys, which will come into effect in 2017 as a measure to reduce carbon emissions.  Currently all new buildings in California are required to set aside 15% of roof area for solar. (2)

“Under existing state law, California’s Title 24 Energy Standards require 15% of roof area on new small and mid-sized buildings to be “solar ready,” which means the roof is unshaded by the proposed building itself, and free of obtrusions. This state law applies to all new residential and commercial buildings of 10 floors or less.

Supervisor Wiener’s ordinance builds on this state law by requiring this 15% of “solar ready” roof area to have solar actually installed. This can take the form of either solar photovoltaic or solar water panels, both of which supply 100% renewable energy.” (3)

Weather and Aging Infrastructure:

Despite an increasing abundance of energy-efficient buildings and other measures, electricity demand has risen by around 10% over the last decade, partly driven by the massive growth of digital device usage and the expanding demand for air conditioning, as summers continue to get hotter in many states.

According to 2013 data from the Department of Energy (DOE), US power grid outages have risen by 285% since records on blackouts began in 1984, for the most part driven by the grid’s vulnerability to unusual and extreme weather events – such as the devastating Hurricane Sandy in 2012 that caused extensive power outages across the East Coast – which are becoming less unusual as the years roll on.

“We used to have two to five major weather events per year from the 50s to the 80s,” said University of Minnesota Professor of Electrical and Computer Engineering Massoud Amin in a 2014 interview with the International Business Times.

“Between 2008 and 2012, major outages caused by weather increased to 70 to 130 outages per year. Weather used to account for about 17% to 21% of all root causes. Now, in the last five years, it’s accounting for 68% to 73% of all major outages.” (4)

How is the Smart Grid so different from the traditional electrical grid?

The established model of providing power to consumers involves the supply of electricity generated from a distant source and transmitted at high voltage to sub-stations local to the consumer, refer to Figure 2.  The power plants that generate the electricity are mostly thermo-electric (coal, gas and nuclear power), with some hydro-electric sources (dams and reservoirs) and most recently wind farms and large solar installations.

“The national power grid that keeps America’s lights on is a massive and immensely valuable asset. Built in the decades after the Second World War and valued today at around $876bn, the country’s grid system as a whole connects electricity from thousands of power plants to 150 million customers through more than five million miles of power lines and around 3,300 utility companies.” (4)

power_fig1 Old Grid Model.gif

Figure 2:  Existing Transmission and Distribution Grid Structure within the Power Industry (5)

The (Transmission & Distribution) market supplies equipment, services and production systems for energy markets. The initial stage in the process is converting power from a generation source (coal, nuclear, wind, etc.) into a high voltage electrical format that can be transported using the power grid, either overhead or underground. This “transformation” occurs very close to the source of the power generation.

The second stage occurs when this high-voltage power is “stepped-down” by the use of switching gears and then controlled by using circuit breakers and arresters to protect against surges. This medium voltage electrical power can then be safely distributed to urban or populated areas.

The final stage involves stepping the power down to useable voltage for the commercial or residential customer.  In short, while power generation relates to the installed capacity to produce energy from an organic or natural resource, the T&D space involves the follow up “post-power generation production” as systems and grids are put in place to transport this power to end users. (5)

The Smart Grid is an evolution in multiple technologies which in cases is overlaying or emerging from the existing grid.  New generating facilities such as wind power or solar installations which may be small or local to a municipal or industrial user are being tied into the existing grid infra-structure.  In some cases residential PV Solar systems are being tied into the Grid with some form of agreement to purchase excess energy, in some cases at rates favorable to the installer, depending on the utility and region.

Another characteristic of the evolving Smart Grid is in communication technology and scalability.  Use of wifi protocols for communication between parts of the system allow for new processes and access to resources which were previously unavailable.  Ability to control systems to defer demand to non-peak hours within a building as one example.

Microgrids, smaller autonomous systems servicing a campus of buildings or larger industry,  may plug into a larger City-wide Smart Grid in a modular manner.  In the event of a catastrophic event such as a hurricane or earthquake the Smart Grid offers users resiliency through multiple sources of energy supply.

Distributed Generation includes a number of different and smaller scale energy sources into the mix.  The newer, small scale Renewable Energy projects which are being tied to the electrical grid as well as other technologies such as Co-Generation, Waste To Energy facilities, Landfill Gas Systems, Geothermal and the like.  As growth continues there needs to be ways to control and manage these multiple energy sources into the grid.  Also increased needs to maintain privacy, isolate and control systems, and prevent unauthorized access and control.  This is leading to growth in  Energy Management and Security Systems.

ARES-rail-train

Figure 3:  An artist’s rendering of the massive rail used in the ARES power storage project to store renewable energy as gravitational potential energy. Source: ARES North America (6)

Energy Storage is emerging as necessary in the Smart Grid due to fluctuations in source supply of energy, especially Solar and Wind Power, and the intermittent and cyclical nature of user demand.   The existing grid does not have the need for energy storage systems as energy sources were traditionally large power stations which generally responded to anticipated need during the course of the day.

As more Renewable Energy systems go online the need for storage will grow.  Energy Storage in its various forms will also enable Load Shifting or Peak Shaving strategies for economic gains in user operations.  These strategies are already becoming commercially available for buildings to save the facility operators rate charges by limiting demand during peak periods at higher utility rates.

RTEmagicC_CSE1412_MAG_PP_FENERGY_Figure_1.jpg

Figure 4:  Effect of Peak Shaving using Energy Storage  (6) 

Peak-load shifting is the process of mitigating the effects of large energy load blocks during a period of time by advancing or delaying their effects until the power supply system can readily accept additional load. The traditional intent behind this process is to minimize generation capacity requirements by regulating load flow. If the loads themselves cannot be regulated, this must be accomplished by implementing energy storage systems (ESSs) to shift the load profile as seen by the generators (see Figure 4).

Depending on the application, peak-load shifting can be referred to as “peak shaving” or “peak smoothing.” The ESS is charged while the electrical supply system is powering minimal load and the cost of electric usage is reduced, such as at night. It is then discharged to provide additional power during periods of increased loading, while costs for using electricity are increased. This technique can be employed to mitigate utility bills. It also effectively shifts the impact of the load on the system, minimizing the generation capacity required. (6)

Challenges with chemical storage systems such as batteries are scale and cost.  Currently pumped hydro is the predominant method of storing energy from intermittent sources providing 99% of global energy storage. (7)

inline_demandresponse

Figure 5:  Actual Savings accrued due to Demand Response Program  (8) 

Demand Response (DR) is another technology getting traction in the Smart Grid economy. As previously mentioned Energy Management and Security Systems are “…converging with Energy Storage technology to make DR a hot topic.  First, the tools necessary to determine where energy is being stored, where it is needed and when to deliver it is have developed over decades in the telecommunications sector.  Secondly, the more recent rush of advanced battery research is making it possible to store energy and provide the flexibility necessary for demand response to really work. Mix that with the growing ability to generate energy on premises through solar, wind and other methods (Distributed Generation) and a potent new distributed structure is created.” (9)

Demand response programs provide financial incentives to reduce energy consumption during peak periods of energy demand. As utilities and independent system operators (ISOs) are pressured to keep costs down and find ways to get as many miles as they can out of every kilowatt, demand response programs have gained popularity. (8)

VirtualPowerPlant#1

Figure 6:  The Demonstration Project 2’s Virtual Power Plant (10) 

Virtual Power Plant: When an increasing share of energy is produced by renewable sources such as solar and wind, electricity production can fluctuate significantly. In the future there will be a need for services which can help balance power systems in excess of what conventional assets will be able to provide. Virtual power plants (VPPs) are one of the most promising new technologies that can deliver the necessary stabilising services.  (11)

In the VPP model an energy aggregator gathers a portfolio of smaller generators and operates them as a unified and flexible resource on the energy market or sells their power as system reserve.

VPPs are designed to maximize asset owners’ profits while also balancing the grid. They can match load fluctuations through forecasting, advance metering and computerized control, and can perform real-time optimization of energy resources.

“Virtual power plants essentially represent an ‘Internet of Energy,’ tapping existing grid networks to tailor electricity supply and demand services for a customer,” said Navigant senior analyst Peter Asmus in a market report. The VPP market will grow from less than US $1 billion per year in 2013 to $3.6 billion per year by 2020, according to Navigant’s research — and one reason is that with more variable renewables on the grid flexibility and demand response are becoming more crucial.  (12)

How-Microgrids-Work.jpg

Figure 7:   Example of a Microgrid System With Loads, Generation, Storage and Coupling to a Utility Grid (13)

Microgrids:  Microgrids are localized grids that can disconnect from the traditional grid to operate autonomously and help mitigate grid disturbances to strengthen grid resilience (14).  The structure of a microgrid is a smaller version of the smart grid formed in a recursive  hierarchy where multiple local microgrids may interconnect to form the larger smart grid which services a region or community.

Summary:

The convergence of aging existing infrastructure, continued growth in populations and electrical demand and concerns over climate change have lead to the emerging smart grid and it’s array of new technologies.  This trend is expected to continue as new growth and replacement will be necessary for an aging electrical grid system, from the larger scope transmission systems and utilities, to smaller scale microgrids.  These systems will become integrated and modular, almost plug-and-play, with inter-connectivity and control through wireless internet protocols.

References:

  1. https://cleanpowermarketinggroup.com/category/blog/
  2. http://www.npr.org/sections/thetwo-way/2016/04/20/474969107/san-francisco-requires-new-buildings-to-install-solar-panels
  3. https://medium.com/@Scott_Wiener/press-release-board-of-supervisors-unanimously-passes-supervisor-wiener-s-legislation-to-require-693deb9c2369#.3913ug8ph
  4. http://www.power-technology.com/features/featureupgrading-the-us-power-grid-for-the-21st-century-4866973/
  5. http://www.incontext.indiana.edu/2010/july-aug/article3.asp
  6. http://www.csemag.com/single-article/implementing-energy-storage-for-peak-load-shifting/95b3d2a5db6725428142c5a605ac6d89.html
  7. http://www.forbes.com/sites/jamesconca/2016/05/26/batteries-or-train-pumped-energy-for-grid-scale-power-storage/#30b5b497de55
  8. http://www.summitenergygps.com/optimize-rebates-incentives-credits.html
  9. https://duanetilden.com/2015/12/26/demand-response-energy-distribution-a-technological-revolution/
  10. https://hub.globalccsinstitute.com/publications/twenties-project-final-report-short-version/demonstration-project-2-large-scale-virtual-power-plant-integration-derint
  11. http://energy.gov/oe/services/technology-development/smart-grid/role-microgrids-helping-advance-nation-s-energy-system
  12. http://www.renewableenergyworld.com/articles/print/volume-16/issue-5/solar-energy/virtual-power-plants-a-new-model-for-renewables-integration.html
  13. http://w3.usa.siemens.com/smartgrid/us/en/microgrid/pages/microgrids.aspx
  14. http://energy.gov/oe/services/technology-development/smart-grid/role-microgrids-helping-advance-nation-s-energy-system

Related Blog Posts:

Other Related Articles and Websites:

PV Panel Energy Conversion Efficiency Rankings

The purpose of this brief is to investigate into the types of solar panel systems with a look at their theoretical maximum Energy Conversion Efficiency both in research and the top 20 manufactured commercial PV panels. 

PVeff(rev160420)

Figure 1:  Reported timeline of solar cell energy conversion efficiencies since 1976 (National Renewable Energy Laboratory) (1)

Solar panel efficiency refers to the capacity of the panel to convert sunlight into electricity.   “Energy conversion efficiency is measured by dividing the electrical output by the incident light power.” (1)  There is a theoretical limit to the efficiency of a solar cell of “86.8% of the amount of in-coming radiation. When the in-coming radiation comes only from an area of the sky the size of the sun, the efficiency limit drops to 68.7%.”

Figure 1 shows that there has been considerable laboratory research and data available on the various configurations of photo-voltaic solar cells and their energy conversion efficiency from 1976 to date.  One major advantage is that as PV module efficiency increases the amount of material  or area required (system size) to maintain a specific nominal output of electricity will generally decrease.

Of course, not all types of systems and technologies are economically feasible at this time for mainstream production.  The top 20 PV solar cells are listed in Figure 2 below with their accompanying measured energy efficiency.

top-20-most-efficient-solar-panels-chart

Figure 2:  Table of the top 20 most efficient solar panels on the North American Market (2)

Why Monocrystalline Si Panels are more Efficient:

Current technology has the most efficient solar PV modules composed of monocrystalline silicon.  Lower efficiency panels are composed of polycrystalline silicon and are generally about 13 to 16% efficient.  This lower efficiency is attributed to higher occurrences of defects in the crystal lattice which affects movement of electrons.  These defects can be imperfections and impurities, as well as a result of the number of grain boundaries present in the lattice.  A monocrystal by definition has only grain boundaries at the edge of the lattice.  However a polycrystalline PV module is full of grain boundaries which present additional discontinuities in the crystalline lattice; impeding electron flow thus reducing conversion efficiency. (3) (4)

Other Factors that can affect Solar Panel Conversion Efficiency in Installations (5):

Direction and angle of your roof 
Your roof will usually need to be South, East or West facing and angled between 10 and 60 degrees to work at its peak efficiency.

Shade
The less shade the better. Your solar panels will have a lower efficiency if they are in the shade for significant periods during the day.

Temperature
Solar panel systems need to be installed a few inches above the roof in order to allow enough airflow to cool them down.  Cooler northern climates also improve efficiency to partially compensate for lower intensity.

Time of year
Solar panels work well all year round but will produce more energy during summer months when the sun is out for longer.  In the far northern regions the sun can be out during the summer for most of the day, conversely during the winter the sun may only be out for a few hours each day.

Size of system
Typical residential solar panel systems range from 2kW to 4kW. The bigger the system the more power you will be able to produce.  For commercial and larger systems refer to a qualified consultant.

 

References:

  1. https://en.wikipedia.org/wiki/Solar_cell_efficiency
  2. http://sroeco.com/solar/top-20-efficient-solar-panels-on-the-market/
  3. http://energyinformative.org/best-solar-panel-monocrystalline-polycrystalline-thin-film/
  4. http://www.nrel.gov/docs/fy11osti/50650.pdf
  5. http://www.theecoexperts.co.uk/which-solar-panels-are-most-efficient

Solar Energy on Reservoirs, Brownfields and Landfills

One of the downsides to large-scale solar power is finding space suitable for the installation of a large area of PV panels or mirrors for CSP.  These are long-term installations, and will have impact on the land and it’s uses.  There are potential objections to committing areas of undeveloped or pristine land to solar power. 

Solar Energy on Reservoirs:

Floating arrays have been installed on surfaces such as water reservoirs as these “land areas” are already committed to a long-term purpose.  Solar power is considered a good synchronistic fit, and most recently work was completed in England seeing “23,000 solar panels on the Queen Elizabeth II reservoir at Walton-on-Thames”.   (1)

Water utilities are the first to see the benefit of solar panel installations as the power generated is generally consumed by the utilities operations for  water treatment and pumping.  This of course offsets demand requirements from the electrical utility and reduces operating costs with a ROI from the installation.  Possible government or other industry incentives and subsidies may enhance benefits.  Last year a 12,000 panel system was installed on a reservoir near Manchester (UK) and was the second of it’s kind in Britain, dwarfing the original installation of 800 panels.  (2)  (3)

Solar Array on Reservoir Japan MjcxMzAwOQ

Image #1:  World’s largest floating array of PV Solar Panels in Japan (4)

Currently Japan has the most aggressive expansion plans for reservoir installations, with the most recent being the world’s largest of it’s kind.  Recent changes in energy policies and the ongoing problems associated with Nuclear Power has propelled Japan into aggressively seeking alternative forms of energy.

The 13.7-megawatt power station, being built for Chiba Prefecture’s Public Enterprise Agency, is located on the Yamakura Dam reservoir, 75 kilometers east of the capital. It will consist of some 51,000 Kyocera solar modules covering an area of 180,000 square meters, and will generate an estimated 16,170 megawatt-hours annually. That is “enough electricity to power approximately 4,970 typical households,” says Kyocera. That capacity is sufficient to offset 8,170 tons of carbon dioxide emissions a year, the amount put into the atmosphere by consuming 19,000 barrels of oil.” 

“[…]“Due to the rapid implementation of solar power in Japan, securing tracts of land suitable for utility-scale solar power plants is becoming difficult,” Toshihide Koyano, executive officer and general manager of Kyocera’s solar energy group told IEEE Spectrum. “On the other hand, because there are many reservoirs for agricultural use and flood-control, we believe there’s great potential for floating solar-power generation business.”

He added that Kyocera is currently working on developing at least 10 more projects and is also considering installing floating installations overseas.” (4)

Solar Energy on Brownfields:

A Brownfield is defined generally by the EPA  (5)

A brownfield is a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. It is estimated that there are more than 450,000 brownfields in the U.S. Cleaning up and reinvesting in these properties increases local tax bases, facilitates job growth, utilizes existing infrastructure, takes development pressures off of undeveloped, open land, and both improves and protects the environment.

Solar Brownfield 1 D6A13-0092.jpg

Image #2:  6-MW solar PV array on the site of the former Palmer Metropolitan Airfield (6)

Traditionally most solar projects have been built on “Greenfields”, however, on further analysis it makes far more sense to install solar on “Brownfields”.

The U.S. is home to more than 450,000 brownfields – unused property that poses potential environmental hazards. Eyesores as well as potential health and safety threats, brownfield sites reduce urban property values. Rehabilitating them pays off, and in more ways than one, according to a July, 2014 National Bureau of Economic Research (NBER) working paper entitled, ¨The Value of Brownfield Remediation.¨ […]

NBER researchers determined that remediation increased the value of individual brownfield sites $3,917,192, with a median value of $2,117,982. That compares to an estimated per-site cost of $602,000. In percentage terms across the study’s nationally representative sample, EPA-supported clean-ups resulted in property price increases of between 4.9% and 32.2%. (6)

In another example where a Brownfield remediation effort has payed off utilizing a Solar Power upgrade is at the Philadelphia Navy Yard according to a June 2011 report by Dave Levitan (7) where it says:

“The Navy Yard solar array is just one of a growing number of projects across the U.S. that fall into the small category of energy ideas that appear to have little to no downside: turning brownfields — or sites contaminated

Every solar project that rises from an industrial wasteland is one that won’t be built on pristine land.

or disturbed by previous industrial activity — into green energy facilities. Among the successfully completed brown-to-green projects are a wind farm at the former Bethlehem Steel Mill in Lackawanna, New York; a concentrating solar photovoltaic array on the tailings pile of a former molybdenum mine in Questa, New Mexico; solar panels powering the cleanup systems at the Lawrence Livermore National Laboratory’s Superfund site in northern California; and the U.S. Army’s largest solar array atop a former landfill in Fort Carson, Colorado.”

Solar Energy on Landfills:

Building solar power projects on top of closed off landfills appears to be a good idea, however, there are additional considerations and requirements which must be met which would exceed those of a normal type of undisturbed geology.

Construction and ongoing operation of the plant must never break, erode or otherwise impair the functioning integrity of the landfill final closure system (including any methane gas management system) already in place.”  (8) […]

A-Simple-Guide-to-Building-Photovoltaic-Projects-on-Landfills-and-Other-...-copy-3-291x300

Image #3:  Prescriptive Landfill Capping System

In general, the features of a conventional “Subtitle D” final protection barrier cover system on USA waste sites are shown in the illustration above and include the following layers added on top of a waste pile:

  1. First, a foundation Layer – usually soil—covers the trash to fill and grade the area and protect the liner.
  2. Then typically a geomembrane liner or a compacted clay layer .is spread over the site to entomb the waste mass in a water impermeable enclosure.
  3. A drainage layer (i.e. highly transmissive sands or gravels or a manufactured “Geonet”) is next added– especially in areas with heavy rainfall and steeper slopes. This is to prevent the sodden top layers of dirt from slipping off the impermeable barrier (a.k.a. a landslide).
  4. Next, typically 18 inches of soil is added as a “protection layer.”
  5. Finally, an “erosion layer” of soil – typically 6 inches of dirt of sufficient quality to support plant growth (grasses, etc., etc.) which the waste industry calls a “vegetative layer.”

Solar-landfill-table-lo-res

Image #4:  Established Solar Energy Projects on Closed Landfills (9)

As of 2013 we can see that there already have been a number of solar installations and that this number is still growing through to the present as more municipalities seek ways to convert their closed landfills into a renewable resource and asset.

Summary of Solar Energy Project Types by Site

A greenfield site is defined as an area of agricultural or forest land, or some other undeveloped site earmarked for commercial development or industrial projects.  This is compared to a brownfield site which is generally unsuitable for commercial development or industrial projects due to the presence of some hazardous substance, pollutant or contaminant.

While a water reservoir is not a contaminated site, it is generally rendered useless for most purposes, however provides an ideal site for locating solar panels as they provide relatively large areas of unobstructed sun.  Also reservoirs provide water cooling which enhances energy efficiency and PV performance.  Uncovered reservoirs can be partially covered by floating arrays of PV panels, of modest to large sizes in the 16 MW range.  Installations can be found throughout the world, including England and most recently Japan where interest in alternative energy sources is growing rapidly.

A brownfield site is considered ideal for the location of a solar plant as a cost-effective method of an otherwise useless body of land, such as a decommissioned mine, quarry, or contaminated site.  A landfill is one form of brownfield site which could be suitable for the installation of solar power where provision has been made to protect the cap on the landfill.  Municipalities have been showing growing interest in landfill solar as a means to offset operational costs.

Abbreviations:

PV – Photo Voltaic

CSP – Concentrated Solar Power

ROI – Return On Investment

UK – United Kingdom

NBER – National Bureau of Economic Research

EPA – Environmental Protection Agency

References:

  1. http://www.theguardian.com/environment/2016/feb/29/worlds-biggest-floating-solar-farm-power-up-outside-london
  2. http://www.telegraph.co.uk/finance/newsbysector/energy/11954334/United-Utilities-floats-3.5m-of-solar-panels-on-reservoir.html
  3. http://www.telegraph.co.uk/news/earth/energy/solarpower/11110547/Britains-first-floating-solar-panel-project-installed.html
  4. http://spectrum.ieee.org/energywise/energy/renewables/japan-building-worlds-largest-floating-solar-power-plant
  5. https://www.epa.gov/brownfields/brownfield-overview-and-definition
  6. http://microgridmedia.com/massachusetts-pv-project-highlights-benefits-of-solar-brownfields/
  7. http://e360.yale.edu/feature/brown_to_green_a_new_use_for_blighted_industrial_sites/2419/
  8. http://solarflexrack.com/a-simple-guide-to-building-photovoltaic-projects-on-landfills-and-other-waste-heaps/
  9. http://www.crra.org/pages/Press_releases/2013/6-3-2013_CRRA_solar_cells_on_Hartford_landfill.htm

Energy Storage Compared to Conventional Resources Using LCOE Analysis

In its first analysis of the levelized cost of storage, Lazard finds some promising economic trends.

Sourced through Scoop.it from: www.greentechmedia.com

“[…] “Although in its formative stages, the energy storage industry appears to be at an inflection point, much like that experienced by the renewable energy industry around the time we created the LCOE study eight years ago,” said George Bilicic, the head of Lazard’s energy and infrastructure group, in a release about the report.

Lazard modeled a bunch of different use cases for storage in front of the meter (replacing peaker plants, grid balancing, and equipment upgrade deferrals) and behind the meter (demand charge reduction, microgrid support, solar integration). It also modeled eight different technologies, ranging from compressed-air energy storage to lithium-ion batteries.

“As a first iteration, Lazard has captured the complexity of valuating storage costs pretty well. Unlike with solar or other generation technologies, storage cost analysis needs to account for not just different technologies, but also location and application, essentially creating a three-dimensional grid,” said Ravi Manghani, GTM Research’s senior storage analyst.

In select cases, assuming best-case capital costs and performance, a handful of storage technologies rival conventional alternatives on an unsubsidized basis in front of the meter. Using lithium-ion batteries for frequency regulation is one example. Deploying pumped hydro to integrate renewables into the transmission system is another.  […]

See on Scoop.itGreen Energy Technologies & Development

Alberta Air Pollution Levels High in Sulphur and Nitrogen Reports Environment Canada

Environment Canada recently released images showing air emissions modelling results across Alberta. These images are a reminder of how a small number of large sources mix together to pollute the air Albertans breathe, resulting in increased risks to human health.

Sourced through Scoop.it from: www.pembina.org

“[…] SO2 and NOx emissions impact human health not only because they can cause direct harm, but also because they can react in the atmosphere to create fine particulate matter (PM2.5). The Alberta government has found that NOx and SO2 are the main causes of past incidents where PM2.5­ concentrations have exceeded Canada’s air quality standards.

PM2.5 can cause asthma attacks, hospitalizations and even premature death, as we’ve summarized before. It’s a particular concern in Alberta, where PM2.5 is putting us on track to have the worst air quality in Canada, and Edmonton’s pollution levels are exceeding Toronto’s.

These images underscore the cumulative impacts of a small number of very large industrial emissions sources — particularly coal plants, the oilsands and refineries — in addition to distributed industrial activities such as oil and gas operations. Those may all be separate sources, but their emissions end up in the same air. Pollutants from these different sources mix together in the air Albertans breathe, resulting in increased risks to human health. […]

Alberta is unique in the western half of North America for its mid- and high-level readings. The province more closely resembles the densely populated mid-Atlantic region of the United States, or the coal-burning Midwest, than our western neighbours.

Problem spots near coal plants, refineries and the oilsands

Another image shows how SO2 and NOX that is released into the atmosphere returns to ground level, or “deposits.” The image reveals a clear concentration (the orange and red spots) of the two pollutants being deposited around both Edmonton and the oilsands in northeast Alberta.

Edmonton is sandwiched between three large coal-burning power plants, which are clustered near Wabamun Lake west of Edmonton, and refineries on the east side of the city.

The video that AEMERA posted shows modelled SO2 plumes from large emitters across British Columbia, Alberta and Saskatchewan. The three-dimensional plumes reflect SO2 concentrations of at least three parts per billion. How the plumes travel was modelled using real weather conditions from a four-week period in the fall of 2013.

The video visually represents where SO2 is generated, how it moves through the atmosphere and where it eventually lands. As SO2 deposits on the ground, the land surface in the video changes colour to indicate where higher depositions are modelled. Although the specifics will differ for other pollutants, the video is representative of how airborne pollutants generally are dispersed and deposited.

It’s not particularly surprising to see that SO2 pollution originates from oil and gas production, coal plants and the oilsands — Alberta’s three largest-emitting sectors, by far. But seeing how much of the province is affected by these plumes may come as a shock.

The video shows that major industrial emissions do not blow in the direction of the prevailing wind pattern. Rather, they shift directions and can be combined with pollutants emitted in different areas. This raises concerns about environmental evaluations for new industrial emitters, since those evaluations focus on a much smaller area around the polluter — and focus on prevailing winds — rather than these dynamic wind patterns.

The data used for the oilsands is from 2010, so it discounts the emissions growth in that region over the last five years. The data for the rest of the sources is from 2006. In terms of coal emissions, these images correspond closely to today’s reality: NOx and SO2 in 2014 are at nearly the same levels as in 2006. […]”

 

See on Scoop.itGreen & Sustainable News

Water Scarcity Drives Global Desalination Requirements, Predicted to Double by 2020

The global desalination capacity will double by 2020, according to a new analysis by Frost & Sullivan.

Sourced through Scoop.it from: www.processingmagazine.com

“[…]  rapid industrialization and urbanization have increased water scarcity in many parts of the world. As drought conditions intensify, desalination is expected to evolve into a long-term solution rather than a temporary fix.

Technology providers can capitalize on this immense potential by developing cost-effective and sustainable solutions, the consulting firm said.

The report states that the global desalination market earned revenues of $11.66 billion in 2015, and this figure is estimated to reach $19.08 billion in 2019. More than 17,000 desalination plants are currently in operation in 150 countries worldwide, a capacity that is predicted to double by the end of the decade.

“Environmentally conscious countries in Europe and the Americas are hesitant to practice desalination owing to its harsh effects on sea water,” noted Vandhana Ravi, independent consultant for Frost & Sullivan’s Environment and Building Technologies unit. “Eco-friendly desalination systems that do not use chemicals will be well-received among municipalities in these regions.”

The report highlights several factors that are holding back adoption in some parts of the world, including lack of regulatory support and the high cost of desalination. The thermal desalination process also releases significant volumes of highly salty liquid brine back into water bodies, impacting the environment. Brine disposal will remain a key challenge until a technology upgrade resolves the issue. […]”

See on Scoop.itGreen Energy Technologies & Development

Oil Well Waste Water Used to Generate Geothermal Power

The team took off-the-shelf geothermal generators and hooked them to pipes carrying boiling waste water. They’re set to flip the switch any day. When they do, large pumps will drive the steaming water through the generators housed in 40-foot (12-meter) containers, producing electricity that could either be used on site or hooked up to power lines and sold to the electricity grid.

Sourced through Scoop.it from: www.bloomberg.com

>”Oil fracking companies seeking to improve their image and pull in a little extra cash are turning their waste water into clean geothermal power.

For every barrel of oil produced from a well, there’s another seven of water, much of it boiling hot. Instead of letting it go to waste, some companies are planning to harness that heat to make electricity they can sell to the grid.

Companies such as Continental Resources Inc. and Hungary’s MOL Group are getting ready to test systems that pump scalding-hot water through equipment that uses the heat to turn electricity-generating turbines before forcing it back underground to coax out more crude.

Though the technology has yet to be applied broadly, early results are promising. And if widely adopted, the environmental and financial benefits could be significant. Drillers in the U.S. process 25 billion gallons (95 billion liters) of water annually, enough to generate as much electricity as three coal-fired plants running around the clock — without carbon emissions.

“We can have distributed power throughout the oil patch,” said Will Gosnold, a researcher at the University of North Dakota who’s leading Continental Resources’ project well.

Geothermal power also holds out the promise of boosting frackers’ green credentials after years of criticism for being the industry’s worst polluters, says Lorne Stockman, research director at Oil Change International, an environmental organization that promotes non-fossil fuel energy.

“This is one way to make it look like the industry cares about the carbon issue,” he said. Even if steam generates less carbon than other oil field power sources, “if you’re in the business of oil and gas, you’re not part of the solution.”

Cheap Oil

Then there’s the money. With crude at less than $50 a barrel, every little bit can help lower costs. At projects like the one being tested by Continental Resources in North Dakota, a 250 kilowatt geothermal generator has the potential to contribute an extra $100,000 annually per well, according to estimates from the U.S. Energy Department.

That’s not big money and the $3.4 million cost to test the technology is still too much to apply to each of Continental’s hundreds of wells. Yet if the company can lower the costs of the technology, it will not only generate electricity it will also extend the economic life of wells, making them more profitable, said Greg Rowe, a production manager with Continental Resources. […]”<

See on Scoop.itGreen Energy Technologies & Development

Cover-up: Fukushima Nuclear Meltdown a Time Bomb Which Cannot be Defused

epa02660905 A handout picture provided by Air Photo Service on 30 March 2011 shows an aerial photo taken by a small unmanned drone of the damaged units of Tokyo Electric Power Co (TEPCO) Fukushima Daiichi nuclear power plant in the town of Okuma, Futaba district, Fukushima prefecture, Japan, 24 March 2011. TEPCO Chairman Tsunehisa Katsumata announced on 30 March it will be more than a few weeks to fix the Fukushima Daiichi nuclear power plant. EPA/AIR PHOTO SERVICE / HO EDITORIAL USE ONLY +++(c) dpa - Bildfunk+++

Four years after the Fukushima nuclear disaster which has caused incredible an ongoing destruction, in the meantime authorities have tried to cover up the serious consequences…

Image source: http://www.theasiasun.com/

Sourced through Scoop.it from: oilprice.com

>” […] Fukushima will likely go down in history as the biggest cover-up of the 21st Century. Governments and corporations are not leveling with citizens about the risks and dangers; similarly, truth itself, as an ethical standard, is at risk of going to shambles as the glue that holds together the trust and belief in society’s institutions. Ultimately, this is an example of how societies fail.

Tens of thousands of Fukushima residents remain in temporary housing more than four years after the horrific disaster of March 2011. Some areas on the outskirts of Fukushima have officially reopened to former residents, but many of those former residents are reluctant to return home because of widespread distrust of government claims that it is okay and safe. […]

According to Japan Times as of March 11, 2015: “There have been quite a few accidents and problems at the Fukushima plant in the past year, and we need to face the reality that they are causing anxiety and anger among people in Fukushima, as explained by Shunichi Tanaka at the Nuclear Regulation Authority. Furthermore, Mr. Tanaka said, there are numerous risks that could cause various accidents and problems.”

Even more ominously, Seiichi Mizuno, a former member of Japan’s House of Councillors (Upper House of Parliament, 1995-2001) in March 2015 said: “The biggest problem is the melt-through of reactor cores… We have groundwater contamination… The idea that the contaminated water is somehow blocked in the harbor is especially absurd. It is leaking directly into the ocean. There’s evidence of more than 40 known hotspot areas where extremely contaminated water is flowing directly into the ocean… We face huge problems with no prospect of solution.”

At Fukushima, each reactor required one million gallons of water per minute for cooling, but when the tsunami hit, the backup diesel generators were drowned. Units 1, 2, and 3 had meltdowns within days. There were four hydrogen explosions. Thereafter, the melting cores burrowed into the container vessels, maybe into the earth. […]

Following the meltdown, the Japanese government did not inform people of the ambient levels of radiation that blew back onto the island. Unfortunately and mistakenly, people fled away from the reactors to the highest radiation levels on the island at the time.

As the disaster happened, enormous levels of radiation hit Tokyo. The highest radiation detected in the Tokyo Metro area was in Saitama with cesium radiation levels detected at 919,000 becquerel (Bq) per square meter, a level almost twice as high as Chernobyl’s “permanent dead zone evacuation limit of 500,000 Bq” (source: Radiation Defense Project). For that reason, Dr. Caldicott strongly advises against travel to Japan and recommends avoiding Japanese food.

Even so, post the Fukushima disaster, Secretary of State Hillary Clinton signed an agreement with Japan that the U.S. would continue importing Japanese foodstuff. Therefore, Dr. Caldicott suggests people not vote for Hillary Clinton. One reckless dangerous precedent is enough for her. […]

Mari Yamaguchi, Associated Press (AP), June 12, 2015: “Four years after an earthquake and tsunami destroyed Japan’s Fukushima nuclear power plant, the road ahead remains riddled with unknowns… Experts have yet to pinpoint the exact location of the melted fuel inside the three reactors and study it, and still need to develop robots capable of working safely in such highly radioactive conditions. And then there’s the question of what to do with the waste… serious doubts about whether the cleanup can be completed within 40 years.” […]

According to the Smithsonian, April 30, 2015: “Birds Are in a Tailspin Four Years After Fukushima: Bird species are in sharp decline, and it is getting worse over time… Where it’s much, much hotter, it’s dead silent. You’ll see one or two birds if you’re lucky.” Developmental abnormalities of birds include cataracts, tumors, and asymmetries. Birds are spotted with strange white patches on their feathers.

Maya Moore, a former NHK news anchor, authored a book about the disaster:The Rose Garden of Fukushima (Tankobon, 2014), about the roses of Mr. Katsuhide Okada. Today, the garden has perished: “It’s just poisoned wasteland. The last time Mr. Okada actually went back there, he found baby crows that could not fly, that were blind. Mutations have begun with animals, with birds.” […] “<

See on Scoop.itGreen & Sustainable News