Shipping’s Growing Carbon Gap

Transport's Carbon & Energy Future

sinking_container_ship

On the face of it, Shipping is the most efficient of freight transport modes. Intermodal shipping containers kick-started rapid growth in trade globalisation 60 years ago, and container ships, tankers and bulk carriers have been getting bigger ever since. Carrying more freight with less fuel on a tonne-mile basis, shipping has the highest energy productivity of all transport modes.

Yet looks can be deceiving. While international shipping contributes 2.4% of global greenhouse gas emissions, business-as-usual could see this explode to a whopping 18% by 2050. As trade growth increases demand, today’s fleet burns the dirtiest transport fuels, and a new report shows the market doesn’t reward ship owners who invest in the latest fuel- and carbon-efficient technologies.

When you consider the scale of the sector’s emission reductions that need to start now to contribute to the COP 21 Paris Agreement target of 1.5°C to 2°C global warming, there’s clearly an…

View original post 604 more words

Advertisement

Entrepreneurial Value and Energy Conservation

014.JPG

Photo of Arbutus Mall, Vancouver

As an engineer and self-proclaimed entrepreneur I find myself value driven when seeking opportunities.  Usually value is something which can measured, whether it be in profit, market share, response rate, efficiency in operations and resource management, or other metric.  It may be to date unrecognized or otherwise under-utilized or untapped resource which can be subject to improvements or other opportunities.

Education of the market can be a daunting task, and getting recognition may be challenging.  However, perseverance and targeted marketing can eventually lead to opportunities where value can be recognized in a structured manner where a service contract may be offered to complete the scope of the determined project.  Here are some personal thoughts that I am putting down in a Q/A format:

Q.  Why do I write a blog?

A.  Writing a blog on energy in our built and constructed world has multiple benefits.  I get to practice my writing and research skills, learn new and emerging technology, meet new people, continue my growth as an individual and professional, and publish my research.

Q.  Why do I write about energy?

A.  One of the reasons I choose energy conservation and efficiency is my own understanding of how we can rationalize construction projects and work by building operations savings.  In the past with failing mechanical systems in buildings I have specified upgrades to the building plant to improve operations and partially pay for the repairs and upgrades by operational savings.

Q.  What kind of professional services are needed in buildings?

A.  To start we must to perform baseline measurements of the building.  Before changes are made so as to establish existing consumption rates of energy and water, as well as waste streams.  By doing this we can examine methods of reducing consumption rates and establish priorities for improvements and budget proposals for improvements in building equipment, the building envelope, electrical and lighting, as well as fixing ongoing problems or other deficiencies.  Generally speaking, a building energy audit and report is proposed start to this process, where an informal meeting with building staff, obtaining existing plans and doing an initial onsite inspection of operations and systems.

Q.  How can we achieve energy savings and be more green?

A.  Small and local things can add up, this is a fundamental tenet of conservation.  Every act gets examined, where is the waste, what can be reduced, is it needed, how can we do this differently.  All questions need to be asked and answered where an environment is occupied, and can be quite intensive where industry or other energy intensive commercial enterprise may be involved.

Q.  Why do I need an outside consultant or professional to perform this work?

A.  There are many tools a consultant can use and bring to the table with a client.   Knowledge and understanding of systems are important and how they fit together, someone who has experience in systems design, has worked in the field and can provide a service to either establish an initial plan to overseeing the entire project, including design, execution and final occupancy.

Q.  What else is important besides an energy audit?

A.  After an energy audit, building condition review and report may follow a request for proposal if it is determined by the client that repairs are required and a budget for these may be established prior to commencing work.  Within the proposal will be a preliminary scope or statement of work.

 

 

Overly Simple Energy-Economy Models Give Misleading Answers

Does it make a difference if our models of energy and the economy are overly simple? I would argue that it depends on what we plan to use the models for. If all we want to do is determine approximately how many years in the future energy supplies will turn down, then a simple model is perfectly sufficient. But if we want to determine how we might change the current economy to make it hold up better against the forces it is facing, we need a more complex model that explains the economy’s real problems as we reach limits.We need a model that tells the correct shape of the curve, as well as the approximate timing. I suggest reading my recent post regarding complexity and its effects as background for this post.

The common lay interpretation of simple models is that running out of energy supplies can be expected to be our overwhelming problem in the future. A more complete model suggests that our problems as we approach limits are likely to be quite different: growing wealth disparity, inability to maintain complex infrastructure, and growing debt problems.Energy supplies that look easy to extract will not, in fact, be available because prices will not rise high enough. These problems can be expected to change the shape of the curve of future energy consumption to one with a fairly fast decline, such as the Seneca Cliff.

Source: Overly Simple Energy-Economy Models Give Misleading Answers

Measuring and Monitoring Energy Efficiency

Defining Energy Efficiency

To begin, let us ask what is energy efficiency, what are it’s components and how is it measured.  To make comparisons we need to gather data using measures relevant to the industry in question, also to the input forms of energy, waste streams and the useful work performed.  In the case of a building we may use meters to measure consumption or utility bills and compare changes in consumption rates over time.

To an engineer, energy efficiency is the ratio of useful work over total energy input.  For example, a room air conditioner’s efficiency is measured by the energy efficiency ratio (EER). The EER is the ratio of the cooling capacity (in British thermal units [Btu] per hour) to the power input (in watts).

On a grander scale we may be looking improvements over an industry or sector, changing fuel types in a utility such as the conversion of a coal plant to the production of power fueled by natural gas to reduce the carbon load on the environment.  Efficiency may be measured by different metrics depending on the result sought and may include the environmental impact of waste streams.

EnergyEfficientEconomy

Figure 1:  Historical Energy Use Graph  (1)

Whatever the exact yearly investment figure, the historical economic impact of efficiency is quite clear. As the graph () shows, efficiency has provided three times more of the economic services than new production since 1970:

The blue line illustrates demand for energy services (the economic activity associated with energy use) since 1970; the solid red line shows energy use; and the green line illustrates the gain in energy efficiency. While demand for energy services has tripled in the last four decades, actual energy consumption has only grown by 40 percent. Meanwhile, the energy intensity of our economy has fallen by half.

The area between the solid red line and the blue line represents the amount of energy we did not need to consume since 1970; the area between the dashed red line and the solid red line indicates how much energy we consumed since 1970.

The chart shows that energy efficiency met nearly three quarters of the demand for services, while energy supply met only one quarter.

“One immediate conclusion from this assessment is that the productivity of our economy may be more directly tied to greater levels of energy efficiency rather than a continued mining and drilling for new energy resources,” wrote Laitner. (1)

As noted in an article by the EIA;  The central question in the measurement of energy efficiency may really be “efficient with respect to what?” (2)  In general terms when discussing energy efficiency improvements we mean to perform more of a function with the same or less energy or material input.

Energy Efficiency Measures

Energy efficiency measures are those improvement opportunities which exist in a system which when taken will achieve the goals of achieving greater performance.  For example refer to Table 1 of Energy Efficiency Measures which can be effectively reduce energy consumption and provide an ROI of 5 or less years when applied to the commercial refrigeration industry.

energy efficient refrigeration4.jpg

Table 1:  Commercial Refrigeration Energy Efficiency Measures (3)


Government Action on Energy Efficiency

Energy efficiency has been put forward as one of the most effective methods in efforts to address the issue of Climate Change.  Recently, on February 19, 2015, President Obama signed Executive Order (EO) 13693.

“Since the Federal Government is the single largest consumer of energy in the Nation, Federal emissions reductions will have broad impacts.  The goals of EO 13693 build on the strong progress made by Federal agencies during the first six years of the Administration under President Obama’s 2009 Executive Order on Federal Leadership on Environmental, Energy and Economic Performance, including reducing Federal GHG emissions by 17 percent — which helped Federal agencies avoid $1.8 billion in cumulative energy costs — and increasing the share of renewable energy consumption to 9 percent.  

With a footprint that includes 360,000 buildings, 650,000 fleet vehicles, and $445 billion spent annually on goods and services, the Federal Government’s actions to reduce pollution, support renewable energy, and operate more efficiently can make a significant impact on national emissions. This EO builds on the Federal Government’s significant progress in reducing emissions to drive further sustainability actions through the next decade. In addition to cutting emissions and increasing the use of renewable energy, the Executive Order outlines a number of additional measures to make the Federal Government’s operations more sustainable, efficient and energy-secure while saving taxpayer dollars. Specifically, the Executive Order directs Federal agencies to:

– Ensure 25 percent of their total energy (electric and thermal) consumption is from clean energy sources by 2025.

– Reduce energy use in Federal buildings by 2.5 percent per year between 2015 and 2025.

– Reduce per-mile GHG emissions from Federal fleets by 30 percent from 2014 levels by 2025, and increase the percentage of zero emission and plug in hybrid vehicles in Federal fleets.

– Reduce water intensity in Federal buildings by 2 percent per year through 2025. ” (4)


Summary

Energy efficiency has gained recognition as a leading method to reduce the emissions of GHG’s seen to be the cause of climate change.  Under scrutiny, we find that there are different measures of efficiency across different industry, fuel types and levels.  For example on a micro-level, the functioning of a system may be improved by including higher efficiency components in it’s design, such as motors and pumps.

However, there are other changes which can improve efficiency.  Adding automated computer controls can improve a system level efficiency.   Utilities may change from coal burning to natural gas fired power plants, or industry may convert to a process to include for co-generation.  Battery storage and other technological improvements may come along to fill in the gap.

Historically Energy Efficiency measures have proven to be gaining ground by employing people with the savings earned when applying measures to reduce consumption.  These savings reverberate through the economy in a meaningful way, by reducing the need for the construction of more power plants as one example as we on an individual level.  We consume less energy, and using higher efficiency electronic equipment, and other energy savings measures at a consumer level, our communities are capable of more growth with existing energy supplies.

jEnergy production and consumption, as well as population growths also arise to other issues related to energy consumption, such as water consumption, water waste, and solid material waste.  Building with sustainable materials which promote healthy living environments is gaining importance as we understand the health impacts of a building’s environment on the health and well-being of the occupants.  Energy efficiency in the modern era, as we see from recent government mandates and sustainability programs, such as LEED’s for one, also includes for reductions in water intensity and incorporation of renewable energy programs as an alternative to increasing demand on existing utilities.

 

 

Related Blog Posts:

References

  1. http://www.greentechmedia.com/articles/read/report-u.s.-energy-efficiency-is-a-bigger-industry-than-energy-supply
  2. http://www.eia.gov/emeu/efficiency/measure_discussion.htm
  3. http://www.nwfpa.org/nwfpa.info/component/content/article/52-refrigeration/284-energy-efficient-refrigeration-systems
  4. https://www.whitehouse.gov/administration/eop/ceq/sustainability

The Smart Grid – Modern Electrical Infrastructure

When we talk about the emerging Smart Grid there comes with the topic an array of exciting and new technologies; Micro-Grids, Distributed Generation, Smart Meters, Load Shifting, Demand Response, Electric Vehicles with Battery Storage for Demand Response, and more.  Recent development in Renewable Energy sources has been driven by concerns over Climate Change, allowing for unprecedented growth in residential and commercial PV Solar Panel installations.

redwoodhighschool.jpg

Figure 1:  Redwood High School in Larkspur, CA installed a 705kW SunPower system that’s projected to save $250,000 annually. The carports include EV charging stations for four cars. (1)

Climate Change and burning of fossil fuels are hot topics in the world. Most recently the city of San Francisco has mandated the installation of solar panels on all new buildings constructed under 10 storeys, which will come into effect in 2017 as a measure to reduce carbon emissions.  Currently all new buildings in California are required to set aside 15% of roof area for solar. (2)

“Under existing state law, California’s Title 24 Energy Standards require 15% of roof area on new small and mid-sized buildings to be “solar ready,” which means the roof is unshaded by the proposed building itself, and free of obtrusions. This state law applies to all new residential and commercial buildings of 10 floors or less.

Supervisor Wiener’s ordinance builds on this state law by requiring this 15% of “solar ready” roof area to have solar actually installed. This can take the form of either solar photovoltaic or solar water panels, both of which supply 100% renewable energy.” (3)

Weather and Aging Infrastructure:

Despite an increasing abundance of energy-efficient buildings and other measures, electricity demand has risen by around 10% over the last decade, partly driven by the massive growth of digital device usage and the expanding demand for air conditioning, as summers continue to get hotter in many states.

According to 2013 data from the Department of Energy (DOE), US power grid outages have risen by 285% since records on blackouts began in 1984, for the most part driven by the grid’s vulnerability to unusual and extreme weather events – such as the devastating Hurricane Sandy in 2012 that caused extensive power outages across the East Coast – which are becoming less unusual as the years roll on.

“We used to have two to five major weather events per year from the 50s to the 80s,” said University of Minnesota Professor of Electrical and Computer Engineering Massoud Amin in a 2014 interview with the International Business Times.

“Between 2008 and 2012, major outages caused by weather increased to 70 to 130 outages per year. Weather used to account for about 17% to 21% of all root causes. Now, in the last five years, it’s accounting for 68% to 73% of all major outages.” (4)

How is the Smart Grid so different from the traditional electrical grid?

The established model of providing power to consumers involves the supply of electricity generated from a distant source and transmitted at high voltage to sub-stations local to the consumer, refer to Figure 2.  The power plants that generate the electricity are mostly thermo-electric (coal, gas and nuclear power), with some hydro-electric sources (dams and reservoirs) and most recently wind farms and large solar installations.

“The national power grid that keeps America’s lights on is a massive and immensely valuable asset. Built in the decades after the Second World War and valued today at around $876bn, the country’s grid system as a whole connects electricity from thousands of power plants to 150 million customers through more than five million miles of power lines and around 3,300 utility companies.” (4)

power_fig1 Old Grid Model.gif

Figure 2:  Existing Transmission and Distribution Grid Structure within the Power Industry (5)

The (Transmission & Distribution) market supplies equipment, services and production systems for energy markets. The initial stage in the process is converting power from a generation source (coal, nuclear, wind, etc.) into a high voltage electrical format that can be transported using the power grid, either overhead or underground. This “transformation” occurs very close to the source of the power generation.

The second stage occurs when this high-voltage power is “stepped-down” by the use of switching gears and then controlled by using circuit breakers and arresters to protect against surges. This medium voltage electrical power can then be safely distributed to urban or populated areas.

The final stage involves stepping the power down to useable voltage for the commercial or residential customer.  In short, while power generation relates to the installed capacity to produce energy from an organic or natural resource, the T&D space involves the follow up “post-power generation production” as systems and grids are put in place to transport this power to end users. (5)

The Smart Grid is an evolution in multiple technologies which in cases is overlaying or emerging from the existing grid.  New generating facilities such as wind power or solar installations which may be small or local to a municipal or industrial user are being tied into the existing grid infra-structure.  In some cases residential PV Solar systems are being tied into the Grid with some form of agreement to purchase excess energy, in some cases at rates favorable to the installer, depending on the utility and region.

Another characteristic of the evolving Smart Grid is in communication technology and scalability.  Use of wifi protocols for communication between parts of the system allow for new processes and access to resources which were previously unavailable.  Ability to control systems to defer demand to non-peak hours within a building as one example.

Microgrids, smaller autonomous systems servicing a campus of buildings or larger industry,  may plug into a larger City-wide Smart Grid in a modular manner.  In the event of a catastrophic event such as a hurricane or earthquake the Smart Grid offers users resiliency through multiple sources of energy supply.

Distributed Generation includes a number of different and smaller scale energy sources into the mix.  The newer, small scale Renewable Energy projects which are being tied to the electrical grid as well as other technologies such as Co-Generation, Waste To Energy facilities, Landfill Gas Systems, Geothermal and the like.  As growth continues there needs to be ways to control and manage these multiple energy sources into the grid.  Also increased needs to maintain privacy, isolate and control systems, and prevent unauthorized access and control.  This is leading to growth in  Energy Management and Security Systems.

ARES-rail-train

Figure 3:  An artist’s rendering of the massive rail used in the ARES power storage project to store renewable energy as gravitational potential energy. Source: ARES North America (6)

Energy Storage is emerging as necessary in the Smart Grid due to fluctuations in source supply of energy, especially Solar and Wind Power, and the intermittent and cyclical nature of user demand.   The existing grid does not have the need for energy storage systems as energy sources were traditionally large power stations which generally responded to anticipated need during the course of the day.

As more Renewable Energy systems go online the need for storage will grow.  Energy Storage in its various forms will also enable Load Shifting or Peak Shaving strategies for economic gains in user operations.  These strategies are already becoming commercially available for buildings to save the facility operators rate charges by limiting demand during peak periods at higher utility rates.

RTEmagicC_CSE1412_MAG_PP_FENERGY_Figure_1.jpg

Figure 4:  Effect of Peak Shaving using Energy Storage  (6) 

Peak-load shifting is the process of mitigating the effects of large energy load blocks during a period of time by advancing or delaying their effects until the power supply system can readily accept additional load. The traditional intent behind this process is to minimize generation capacity requirements by regulating load flow. If the loads themselves cannot be regulated, this must be accomplished by implementing energy storage systems (ESSs) to shift the load profile as seen by the generators (see Figure 4).

Depending on the application, peak-load shifting can be referred to as “peak shaving” or “peak smoothing.” The ESS is charged while the electrical supply system is powering minimal load and the cost of electric usage is reduced, such as at night. It is then discharged to provide additional power during periods of increased loading, while costs for using electricity are increased. This technique can be employed to mitigate utility bills. It also effectively shifts the impact of the load on the system, minimizing the generation capacity required. (6)

Challenges with chemical storage systems such as batteries are scale and cost.  Currently pumped hydro is the predominant method of storing energy from intermittent sources providing 99% of global energy storage. (7)

inline_demandresponse

Figure 5:  Actual Savings accrued due to Demand Response Program  (8) 

Demand Response (DR) is another technology getting traction in the Smart Grid economy. As previously mentioned Energy Management and Security Systems are “…converging with Energy Storage technology to make DR a hot topic.  First, the tools necessary to determine where energy is being stored, where it is needed and when to deliver it is have developed over decades in the telecommunications sector.  Secondly, the more recent rush of advanced battery research is making it possible to store energy and provide the flexibility necessary for demand response to really work. Mix that with the growing ability to generate energy on premises through solar, wind and other methods (Distributed Generation) and a potent new distributed structure is created.” (9)

Demand response programs provide financial incentives to reduce energy consumption during peak periods of energy demand. As utilities and independent system operators (ISOs) are pressured to keep costs down and find ways to get as many miles as they can out of every kilowatt, demand response programs have gained popularity. (8)

VirtualPowerPlant#1

Figure 6:  The Demonstration Project 2’s Virtual Power Plant (10) 

Virtual Power Plant: When an increasing share of energy is produced by renewable sources such as solar and wind, electricity production can fluctuate significantly. In the future there will be a need for services which can help balance power systems in excess of what conventional assets will be able to provide. Virtual power plants (VPPs) are one of the most promising new technologies that can deliver the necessary stabilising services.  (11)

In the VPP model an energy aggregator gathers a portfolio of smaller generators and operates them as a unified and flexible resource on the energy market or sells their power as system reserve.

VPPs are designed to maximize asset owners’ profits while also balancing the grid. They can match load fluctuations through forecasting, advance metering and computerized control, and can perform real-time optimization of energy resources.

“Virtual power plants essentially represent an ‘Internet of Energy,’ tapping existing grid networks to tailor electricity supply and demand services for a customer,” said Navigant senior analyst Peter Asmus in a market report. The VPP market will grow from less than US $1 billion per year in 2013 to $3.6 billion per year by 2020, according to Navigant’s research — and one reason is that with more variable renewables on the grid flexibility and demand response are becoming more crucial.  (12)

How-Microgrids-Work.jpg

Figure 7:   Example of a Microgrid System With Loads, Generation, Storage and Coupling to a Utility Grid (13)

Microgrids:  Microgrids are localized grids that can disconnect from the traditional grid to operate autonomously and help mitigate grid disturbances to strengthen grid resilience (14).  The structure of a microgrid is a smaller version of the smart grid formed in a recursive  hierarchy where multiple local microgrids may interconnect to form the larger smart grid which services a region or community.

Summary:

The convergence of aging existing infrastructure, continued growth in populations and electrical demand and concerns over climate change have lead to the emerging smart grid and it’s array of new technologies.  This trend is expected to continue as new growth and replacement will be necessary for an aging electrical grid system, from the larger scope transmission systems and utilities, to smaller scale microgrids.  These systems will become integrated and modular, almost plug-and-play, with inter-connectivity and control through wireless internet protocols.

References:

  1. https://cleanpowermarketinggroup.com/category/blog/
  2. http://www.npr.org/sections/thetwo-way/2016/04/20/474969107/san-francisco-requires-new-buildings-to-install-solar-panels
  3. https://medium.com/@Scott_Wiener/press-release-board-of-supervisors-unanimously-passes-supervisor-wiener-s-legislation-to-require-693deb9c2369#.3913ug8ph
  4. http://www.power-technology.com/features/featureupgrading-the-us-power-grid-for-the-21st-century-4866973/
  5. http://www.incontext.indiana.edu/2010/july-aug/article3.asp
  6. http://www.csemag.com/single-article/implementing-energy-storage-for-peak-load-shifting/95b3d2a5db6725428142c5a605ac6d89.html
  7. http://www.forbes.com/sites/jamesconca/2016/05/26/batteries-or-train-pumped-energy-for-grid-scale-power-storage/#30b5b497de55
  8. http://www.summitenergygps.com/optimize-rebates-incentives-credits.html
  9. https://duanetilden.com/2015/12/26/demand-response-energy-distribution-a-technological-revolution/
  10. https://hub.globalccsinstitute.com/publications/twenties-project-final-report-short-version/demonstration-project-2-large-scale-virtual-power-plant-integration-derint
  11. http://energy.gov/oe/services/technology-development/smart-grid/role-microgrids-helping-advance-nation-s-energy-system
  12. http://www.renewableenergyworld.com/articles/print/volume-16/issue-5/solar-energy/virtual-power-plants-a-new-model-for-renewables-integration.html
  13. http://w3.usa.siemens.com/smartgrid/us/en/microgrid/pages/microgrids.aspx
  14. http://energy.gov/oe/services/technology-development/smart-grid/role-microgrids-helping-advance-nation-s-energy-system

Related Blog Posts:

Other Related Articles and Websites:

PV Panel Energy Conversion Efficiency Rankings

The purpose of this brief is to investigate into the types of solar panel systems with a look at their theoretical maximum Energy Conversion Efficiency both in research and the top 20 manufactured commercial PV panels. 

PVeff(rev160420)

Figure 1:  Reported timeline of solar cell energy conversion efficiencies since 1976 (National Renewable Energy Laboratory) (1)

Solar panel efficiency refers to the capacity of the panel to convert sunlight into electricity.   “Energy conversion efficiency is measured by dividing the electrical output by the incident light power.” (1)  There is a theoretical limit to the efficiency of a solar cell of “86.8% of the amount of in-coming radiation. When the in-coming radiation comes only from an area of the sky the size of the sun, the efficiency limit drops to 68.7%.”

Figure 1 shows that there has been considerable laboratory research and data available on the various configurations of photo-voltaic solar cells and their energy conversion efficiency from 1976 to date.  One major advantage is that as PV module efficiency increases the amount of material  or area required (system size) to maintain a specific nominal output of electricity will generally decrease.

Of course, not all types of systems and technologies are economically feasible at this time for mainstream production.  The top 20 PV solar cells are listed in Figure 2 below with their accompanying measured energy efficiency.

top-20-most-efficient-solar-panels-chart

Figure 2:  Table of the top 20 most efficient solar panels on the North American Market (2)

Why Monocrystalline Si Panels are more Efficient:

Current technology has the most efficient solar PV modules composed of monocrystalline silicon.  Lower efficiency panels are composed of polycrystalline silicon and are generally about 13 to 16% efficient.  This lower efficiency is attributed to higher occurrences of defects in the crystal lattice which affects movement of electrons.  These defects can be imperfections and impurities, as well as a result of the number of grain boundaries present in the lattice.  A monocrystal by definition has only grain boundaries at the edge of the lattice.  However a polycrystalline PV module is full of grain boundaries which present additional discontinuities in the crystalline lattice; impeding electron flow thus reducing conversion efficiency. (3) (4)

Other Factors that can affect Solar Panel Conversion Efficiency in Installations (5):

Direction and angle of your roof 
Your roof will usually need to be South, East or West facing and angled between 10 and 60 degrees to work at its peak efficiency.

Shade
The less shade the better. Your solar panels will have a lower efficiency if they are in the shade for significant periods during the day.

Temperature
Solar panel systems need to be installed a few inches above the roof in order to allow enough airflow to cool them down.  Cooler northern climates also improve efficiency to partially compensate for lower intensity.

Time of year
Solar panels work well all year round but will produce more energy during summer months when the sun is out for longer.  In the far northern regions the sun can be out during the summer for most of the day, conversely during the winter the sun may only be out for a few hours each day.

Size of system
Typical residential solar panel systems range from 2kW to 4kW. The bigger the system the more power you will be able to produce.  For commercial and larger systems refer to a qualified consultant.

 

References:

  1. https://en.wikipedia.org/wiki/Solar_cell_efficiency
  2. http://sroeco.com/solar/top-20-efficient-solar-panels-on-the-market/
  3. http://energyinformative.org/best-solar-panel-monocrystalline-polycrystalline-thin-film/
  4. http://www.nrel.gov/docs/fy11osti/50650.pdf
  5. http://www.theecoexperts.co.uk/which-solar-panels-are-most-efficient

Ski resorts and climate change

Mountain Journal

As climate change bears down on us, winters become ever more erratic. This impacts on the economic viability of ski resorts and the jobs of people who rely on them.  In their quest to remain commercially viable, most ski resorts are adopting the double edged strategy of claiming a space in the ‘green season’ tourism market while also investing in snow making technology. A small number are also showing leadership in terms of grappling with the actual problem of climate change. Sadly, no Australian resorts are in this category.

View original post 942 more words

Energy Storage Compared to Conventional Resources Using LCOE Analysis

In its first analysis of the levelized cost of storage, Lazard finds some promising economic trends.

Sourced through Scoop.it from: www.greentechmedia.com

“[…] “Although in its formative stages, the energy storage industry appears to be at an inflection point, much like that experienced by the renewable energy industry around the time we created the LCOE study eight years ago,” said George Bilicic, the head of Lazard’s energy and infrastructure group, in a release about the report.

Lazard modeled a bunch of different use cases for storage in front of the meter (replacing peaker plants, grid balancing, and equipment upgrade deferrals) and behind the meter (demand charge reduction, microgrid support, solar integration). It also modeled eight different technologies, ranging from compressed-air energy storage to lithium-ion batteries.

“As a first iteration, Lazard has captured the complexity of valuating storage costs pretty well. Unlike with solar or other generation technologies, storage cost analysis needs to account for not just different technologies, but also location and application, essentially creating a three-dimensional grid,” said Ravi Manghani, GTM Research’s senior storage analyst.

In select cases, assuming best-case capital costs and performance, a handful of storage technologies rival conventional alternatives on an unsubsidized basis in front of the meter. Using lithium-ion batteries for frequency regulation is one example. Deploying pumped hydro to integrate renewables into the transmission system is another.  […]

See on Scoop.itGreen Energy Technologies & Development

In Supreme Court, a Battle Over Fracking and Citizens’ Rights

Jessica Ernst’s long fight to challenge legislation putting energy regulator above the law reaches top court.

Sourced through Scoop.it from: www.thetyee.ca

“[…] After years of legal wrangling, Jessica Ernst and Alberta’s powerful energy regulator finally squared off in the Supreme Court of Canada yesterday.

For almost two hours, all nine justices questioned lawyers from both sides in a case that will determine if legislation can grant government agencies blanket immunity from lawsuits based on the Charter of Rights and Freedoms.

At times the debate was so bogged down in legal jargon and little known cases that it felt as though the participants were holding a conversation in a foreign language. […]

Ernst alleges the Alberta Energy Regulator violated her rights by characterizing her as a “criminal threat” and barring all communication with her.

The claims are part of her multipronged lawsuit related to the regulation of fracking. She says fracking contaminated aquifers near her homestead near Rosebud, about 110 kilometres east of Calgary, and is seeking $33 million in damages. […]

The Supreme Court hearing dealt with Ernst’s allegation that the provincial energy regulator denied her the right to raise her concerns about groundwater contamination. She argues that the legislation shielding the regulator from citizen’s lawsuits should not bar charter claims.

Lawyers for Ernst, the BC Civil Liberties Association and the David Asper Centre for Constitutional Rights all argued that the Alberta Energy Regulator’s immunity clause undermined the spirit of Canada’s charter, which is designed to protect citizens from government abuses of power.

It is patently unfair to allow a government to violate a citizen’s basic freedoms and then deny them an appropriate remedy in the courts, especially when the charter itself grants that right, they argued. […]

Eight years ago, Ernst sued Alberta Environment, the Energy Resources Conservation Board (which has since become the Alberta Energy Regulator) and Encana, one of Canada’s largest unconventional gas drillers. She claimed her well water had been contaminated by fracking and government agencies had failed to investigate the problems.

But the regulator argued that it couldn’t be sued because it had an immunity clause that protected it from civil action.

After an Alberta Court of Appeal agreed, Ernst’s lawyers appealed the matter to the Supreme Court in 2014.

Initially three provincial governments and the federal government announced their intention to intervene in the case.

“But once they looked at the arguments, they withdrew,” said Murray Klippenstein, another of Ernst’s lawyers, after yesterday’s hearing.

“So there was no government here to support the argument of the [regulator],” added Klippenstein. “It kind of shows in a common sense sort of way how ridiculous the position is.”

The case made legal history, too. “This is the first time the Supreme Court has heard a case about human rights with an environmental context,” noted Lynda Collins, a professor of law at the University of Ottawa’s Centre for Environmental Law and Global Studies.

She said the case concerns the right of a citizen to pinpoint environmental wrongs, such as groundwater contamination, without being penalized by a regulatory body.

Whenever a regulator allegedly takes punitive measures against a citizen addressing key environmental issues in the public interest, “you have a serious allegation,” added Collins. […]

The case is being closely watched by Canada’s oil and gas industry. In 2014, Borden Ladner Gervais, Canada’s largest national full-service law firm, included the Ernst case in a top 10 list of important judicial decisions affecting the energy industry.

“The Ernst case has brought into focus the potential for regulator or provincial liability arising out of oil and gas operations…. If Ernst proceeds to trial, it will likely provide more guidance on the scope of the duty of care and the standard of care required by the province and the oil and gas operator to discharge their duties in the context of hydraulic fracturing.”

The fracking industry has been the subject of scores of lawsuits across North America. Landowners have sued over property damage and personal injury related to industry-caused earthquakes, air pollution and the contamination of groundwater.

In one major Texas case, a jury awarded one family $3 million. The verdict found that Aruba Petroleum “intentionally created a private nuisance” though its drilling, fracking and production activities at 21 gas wells near the Parrs’ Wise County home over a three-year period between 2008 and 2011. […]”

See on Scoop.itGreen & Sustainable News

Fox Creek Fracking Operations Stopped After Latest Earthquake

A hydraulic fracturing operation near Fox Creek, Alta., has been shut down after an earthquake hit the area Tuesday.

Sourced through Scoop.it from: www.cbc.ca

“[…] The magnitude 4.8 quake was reported at 11:27 a.m., says Alberta Energy Regulator, which ordered the shutdown of the Repsol Oil & Gas site 35 kilometres north of Fox Creek.

Carrie Rosa, spokeswoman for the regulator, says “the company has ceased operations … and they will not be allowed to resume operations until we have approved their plans.”

Rosa added the company is working with the energy regulator to ensure all environmental and safety rules are followed.

In a statement, Repsol confirmed the seismic event and said the company was conducting hydraulic fracturing operations at the time it happened. […]

Jeffrey Gu, associate professor of geophysics at the University of Alberta, said the area surrounding Fox Creek has been experiencing a proliferation of quakes lately.

He estimates in the last six months there have been hundreds of quakes in the area ranging in magnitude from 2.0 to 3.0.

But it is not considered a risky area with a such low population, said Gu, who added that Fox Creek and the surrounding region is carefully monitored by the energy regulator.

“There are faults in this area that have been mapped, have been reported in that area, but nothing of significance,” he said.

“It’s a relatively safe area without major, major faults.”

Still, Gu said, there were two fairly large quakes in the area in January 2015, one of which had a magnitude of 4.4.

He wasn’t able to confirm that they were caused by fracking, but said it is “highly probable.”

The energy regulator said at the time that the 4.4 magnitude quake was likely caused by hydraulic fracturing. […]

See on Scoop.itGreen & Sustainable News