Thermoelectric Materials: Converting Heat to Electricity

When we think of using electricity one of the prevalent uses is to provide a heat source.  We see this in our everyday lives as ranges and ovens, microwaves, kettles, hot water tanks, baseboard heaters, as well as other applications.  So how about reversing the process and capturing heat and directly converting to electricity, is this possible?  As it happens there is a classification of materials which have a property called a thermoelectric effect.

Boosting energy efficiency is an important element of the transition to a sustainable energy system. There are big savings to be made. For example, less than half the energy content of diesel is actually used to power a diesel truck. The rest is lost, mostly in the form of heat. Many industrial processes also deal with the problem of excessive .

That’s why many research teams are working to develop that can convert waste heat into energy. But it’s no easy task. To efficiently convert heat to electricity, the materials need to be good at conducting electricity, but at the same time poor at conducting heat. For many materials, that’s a contradiction in terms.

“One particular challenge is creating thermoelectric materials that are so stable that they work well at high temperatures,” says Anders Palmqvist, professor of materials chemistry, who is conducting research on thermoelectric materials. (1)

2dthermoelec.jpg

Image 1:  The enlarged illustration (in the circle) shows a 2D electron gas on the surface of a zinc oxide semiconductor. When exposed to a temperature difference, the 2D region exhibits a significantly higher thermoelectric performance compared to that of bulk zinc oxide. The bottom figure shows that the electronic density of states distribution is quantized for 2D and continuous for 3D materials. Credit: Shimizu et al. ©2016 PNAS

The thermoelectric effect is not as efficient as converting electricity to heat, which is generally 100% efficient.  However, with waste energy streams even a small conversion rate may return a significant flow of usable electricity which would normally go up a stack or out a tailpipe.

The large amount of waste heat produced by power plants and automobile engines can be converted into electricity due to the thermoelectric effect, a physics effect that converts temperature differences into electrical energy. Now in a new study, researchers have confirmed theoretical predictions that two-dimensional (2D) materials—those that are as thin as a single nanometer—exhibit a significantly higher thermoelectric effect than three-dimensional (3D) materials, which are typically used for these applications.

The study, which is published in a recent issue of the Proceedings of the National Academy of Sciences by Sunao Shimizu et al., could provide a way to improve the recycling of into useful energy.

Previous research has predicted that 2D materials should have better thermoelectric properties than 3D materials because the electrons in 2D materials are more tightly confined in a much smaller space. This confinement effect changes the way that the electrons can arrange themselves. In 3D materials, this arrangement (called the density of states distribution) is continuous, but in 2D materials, this distribution becomes quantized—only certain values are allowed. At certain densities, the quantization means that less energy is required to move electrons around, which in turn increases the efficiency with which the material can convert heat into . (2)

 

Related Articles:

References:

  1. http://phys.org/news/2016-06-track-electricity.html#jCp
  2. http://phys.org/news/2016-06-electricity-dimensions.html#jCp

Why I did not upgrade to Windows 10

especial_windows_10_button-664x374

I am so happy to see those nag messages disappear from my computer, you know the ones reminding you that your period of time to upgrade to Windows 10 will expire on July 31?   Now that we are in August one less thing popping up that bothers me.

The question being do I upgrade or not?  And friends and family who look to me for advice on such issues want to know what I am doing and why.  Intuitively I felt that upgrading was unwise likely do to past experiences with O/S upgrades and backward compatibility of existing hardware and external devices.

Coolpix 995

For example, I own an older Nikon digital camera, Coolpix 995, which is a newer version of my first digital camera, a Coolpix 990.  Getting software that works for this camera for versions of Windows newer than XP has currently been a challenge.  Driver’s are not available for Windows Vista, 7 and definitely not for Window’s 10.  So such is likely for any devices I currently own.

Also, I like to buy used equipment at bargain prices.  I have learned through my own experience that electronic equipment has a short shelf life and prices drop quickly as newer versions of equipment enter the market.  By creating obsolescence in software, hardware becomes prematurely unusable due to compatibility issues.  When this occurs the current solution is usually to discard the item and buy a new replacement.

HP8530W_Elitebook

Another thing besides compatibility and premature obsolescence is extra work and other unknown issues which will inevitably arise from the upgrade.  I have an ‘Elitebook’ HP 8530 W laptop computer with Window’s 7 for my business and personal use, which I purchased for a bargain on Ebay.  I have spent a lot of time setting it up to work properly, I have no need to upgrade the software.

Let someone else figure it all out, then maybe in a couple of years I will buy a more powerful model at a lower price with Windows 10 or the current version already installed.   So I did not upgrade, and I am okay with that.

 

 

 

Entrepreneurial Value and Energy Conservation

014.JPG

Photo of Arbutus Mall, Vancouver

As an engineer and self-proclaimed entrepreneur I find myself value driven when seeking opportunities.  Usually value is something which can measured, whether it be in profit, market share, response rate, efficiency in operations and resource management, or other metric.  It may be to date unrecognized or otherwise under-utilized or untapped resource which can be subject to improvements or other opportunities.

Education of the market can be a daunting task, and getting recognition may be challenging.  However, perseverance and targeted marketing can eventually lead to opportunities where value can be recognized in a structured manner where a service contract may be offered to complete the scope of the determined project.  Here are some personal thoughts that I am putting down in a Q/A format:

Q.  Why do I write a blog?

A.  Writing a blog on energy in our built and constructed world has multiple benefits.  I get to practice my writing and research skills, learn new and emerging technology, meet new people, continue my growth as an individual and professional, and publish my research.

Q.  Why do I write about energy?

A.  One of the reasons I choose energy conservation and efficiency is my own understanding of how we can rationalize construction projects and work by building operations savings.  In the past with failing mechanical systems in buildings I have specified upgrades to the building plant to improve operations and partially pay for the repairs and upgrades by operational savings.

Q.  What kind of professional services are needed in buildings?

A.  To start we must to perform baseline measurements of the building.  Before changes are made so as to establish existing consumption rates of energy and water, as well as waste streams.  By doing this we can examine methods of reducing consumption rates and establish priorities for improvements and budget proposals for improvements in building equipment, the building envelope, electrical and lighting, as well as fixing ongoing problems or other deficiencies.  Generally speaking, a building energy audit and report is proposed start to this process, where an informal meeting with building staff, obtaining existing plans and doing an initial onsite inspection of operations and systems.

Q.  How can we achieve energy savings and be more green?

A.  Small and local things can add up, this is a fundamental tenet of conservation.  Every act gets examined, where is the waste, what can be reduced, is it needed, how can we do this differently.  All questions need to be asked and answered where an environment is occupied, and can be quite intensive where industry or other energy intensive commercial enterprise may be involved.

Q.  Why do I need an outside consultant or professional to perform this work?

A.  There are many tools a consultant can use and bring to the table with a client.   Knowledge and understanding of systems are important and how they fit together, someone who has experience in systems design, has worked in the field and can provide a service to either establish an initial plan to overseeing the entire project, including design, execution and final occupancy.

Q.  What else is important besides an energy audit?

A.  After an energy audit, building condition review and report may follow a request for proposal if it is determined by the client that repairs are required and a budget for these may be established prior to commencing work.  Within the proposal will be a preliminary scope or statement of work.

 

 

Energy Efficiency Financing for Existing Buildings in California

Much of our efforts to reduce carbon emissions involves fairly complicated and advanced technologies. Whether it’s solar panels, batteries, flywheels, or fuel cells, these technologies have typically required public support to bring them to scale at a reasonable price, along with significant regulatory or legal reforms to accommodate these new ways of doing old things, […]

To recommend policies to boost this capital market financing for energy retrofits, UC Berkeley and UCLA Law are today releasing a new report “Powering the Savings:How California Can Tap the Energy Efficiency Potential in Existing Commercial Buildings.” The report is the 17th in the two law schools’ Climate Change and Business Research Initiative, generously supported by Bank of America since 2009.

The report describes ways that California could unlock more private investment in energy efficiency retrofits, particularly in commercial buildings.  This financing will flow if there’s a predictable, long-term, measured and verified amount of savings that can be directly traced to energy efficiency measures.  New software and methodologies can now more accurately perform this task.  They establish a building’s energy performance baseline, calibrating for a variety of factors, such as weather, building use, and occupancy changes.  That calibrated or “dynamic” baseline can then form the basis for calculating the energy savings that occur due specifically to efficiency improvements.

But the state currently lacks a uniform, state-sanctioned methodology and technology standard, so utilities are reluctant to base efficiency incentives or programs without regulatory approval to use these new methods.  The report therefore recommends that energy regulators encourage utilities to develop aggressive projects based on these emerging metering technologies that can ultimately inform a standard measurement process and catalyze “pay-for-performance” energy efficiency financing, with utilities able to procure energy efficiency savings just like they were a traditional generation resource. […]

via Solving The Energy Efficiency Puzzle — Legal Planet

It takes money to make money: getting money to flow into energy efficiency projects

Energy in Demand - Sustainable Energy - Rod Janssen

Jim Barrett, Chief Economist, for ACEEE, The American Council for an Energy-Efficient Economy, writes an excellent blog on the ACEEE website about an initiative by the Bank of America to increase investments at the community level.

Bank of America’s Energy Efficiency Financing Program shows path to combining energy savings and community development

If you spend any time with the energy efficiency crowd, you will often hear us call it the lowest cost energy resource out there. What you will never hear us say is that energy efficiency is free. Efficiency can do many great things: It saves money, cuts pollution, increases productivity, and creates jobs. What it can’t do is defy one of the fundamental laws that governs all investments—it takes money to make money.

We want to get money flowing into well-designed energy efficiency projects, especially those that can do the most good where it is the most needed…

View original post 1,011 more words