Oldest Nuclear Power Plant in US to be Retired – The 60 Year Decommissioning Process

When a nuclear plant retires, it stops producing electricity and enters into the decommissioning phase. Decommissioning involves removing and safely storing spent nuclear fuel, decontaminating the plant to reduce residual radioactivity, dismantling plant structures, removing contaminated materials to disposal facilities, and then releasing the property for other uses once the NRC has determined the site is safe.

According to Exelon, Oyster Creek will undergo a six-step decommissioning process. The typical decommissioning period for a nuclear power plant is about 60 years, so parts of the Oyster Creek plant structure could remain in place until 2075. (1.)

retired nuclear power plants and nuclear power plants that have announced retirement

Since 2013, six commercial nuclear reactors in the United States have shut down, and an additional eight reactors have announced plans to retire by 2025. The retirement process for nuclear power plants involves disposing of nuclear waste and decontaminating equipment and facilities to reduce residual radioactivity, making it much more expensive and time consuming than retiring other power plants. As of 2017, a total of 10 commercial nuclear reactors in the United States have been successfully decommissioned, and another 20 U.S. nuclear reactors are currently in different stages of the decommissioning process.

To fully decommission a power plant, the facility must be deconstructed and the site returned to greenfield status (meaning the site is safe for reuse for purposes such as housing, farming, or industrial use). Nuclear reactor operators must safely dispose of any onsite nuclear waste and remove or contain any radioactive material, including nuclear fuel as well as irradiated equipment and buildings. (2.)

References:

  1. America’s oldest operating nuclear power plant to retire on Monday
  2. Decommissioning nuclear reactors is a long-term and costly process
Advertisement

Energy Efficiency of Power Production: How Supercritical Carbon Dioxide Turbines Operate

Duane M. Tilden, P.Eng.                                    Sept 1, 2018

Foreword:

This is another article in an ongoing series of reports on the technological development of supercritical carbon dioxide in the power production and energy efficiency sectors of industry, power plants and utilities.

dodge-sco23 supercritical CO2 turbine

Figure 1. Size comparison of Supercritical Power Turbine to Conventional Steam Turbine (1)

Abstract:

The ever increasing search for improving energy and power production efficiency is a natural quest as developments in technology seek to be utilized to improve operations and supply cost effectively. The technologies behind the utilization of supercritical carbon dioxide and other such fluids have long been established. We are furthering our exploration into this sector of power production developing new technologies along the way to a smarter economy and modernization of infrastructure.

The Principle of Operation

Supercritical fluids can play an important role in developing better electricity generators because of their liquid- and gas-like properties. A supercritical fluid is an optimal working fluid because it has a temperature and pressure above its critical point, meaning that it doesn’t have a definite liquid or gas phase. Consequently, the slightest changes in pressure or temperature cause huge changes in the material’s density.

With any supercritical fluid, the ease of compressibility goes up, explains Stapp, so it becomes something more like water. Because supercritical CO2 also compresses more easily than steam, the amount of work done during the compression phase—normally accounting for 25 percent of the work performed inside the system—is dramatically reduced; the energy saved there greatly contributes to the turbine’s overall efficiency.

“We expand it like a gas, and pressurize it like a liquid,” says James Pasch, principle investigator of the Supercritical Carbon Dioxide Brayton Cycle Research and Development Program. “You can do this with any fluid, but supercritical carbon dioxide matches really well with ambient temperatures.”

Carbon dioxide is optimal for this application because it doesn’t go through a phase change at any point during the cycle. Its critical temperature, 88 degrees Fahrenheit, is very close to ambient temperature, which means the heat emitted by the turbine is the same temperature as the surrounding environment. Supercritical carbon dioxide is also very dense; at its critical point, the fluid is about half the density of water. So, in addition to being easier to compress, less work is required to cycle it back to the heat source for re-expansion.

The Brayton Cycle also offers direct environmental benefits. For one, it’s carbon neutral. The system takes carbon dioxide out of the air and puts it in the recompression cycle loop. Just as important is the fact that the system limits water usage by minimizing discharge, evaporation, and withdraw.

“That’s a big deal for the southwest,” says Gary Rochau, manager of Sandia’s Advanced Nuclear Concepts Department. Sandia’s generator can work in places where water is in limited supply. This puts it on par with the Palo Verde Nuclear Power Generating Station, a nuclear power plant in Arizona that uses recycled waste water as cooling water, saving groundwater and municipal water supplies for other uses. (2)

Figure 1. Illustration of a Supercritical CO2 Turbine [Peregrine Turbine Technologies] (2)

Advances in Materials and Technology

GE Reports first wrote about Hofer last year when he 3D printed a plastic prototype of the turbine. His team, partnered with Southwest Research Institute and Gas Technology Institute, has since submitted the design to the U.S. Department of Energy and won an $80 million award to build the 10 MW turbine. The turbine features a rotor that is 4.5 feet long, 7 inches in diameter, and only weighs 150 pounds. The engineers are now completing a scaled-down, 1 MW version of the machine and will test it in July at the Southwest Research Institute.

The idea of using CO2 to power a steam turbine has been around for a while. It first appeared in the late 1960s, and an MIT doctoral student resurrected it in 2004. “The industry has been really interested in the potential benefits of using CO2 in place of steam in advanced supercritical power plants,” Hofer says.

By “supercritical” Hofer means efficient power stations using CO2 squeezed and heated so much that it becomes a supercritical fluid, which behaves like a gas and a liquid at the same time. The world’s most efficient thermal power plant, RDK 8 in Germany, uses an “ultrasupercritical” steam turbine operating at 600 degrees Celsius and pressure of 4,000 pounds per square inch, more than what’s exerted when a bullet strikes a solid object.

Hofer says that the steam power plant technology “has been on a continuous march” to increase efficiency and steam temperature, but once it tops 700 degrees Celsius, “the CO2 cycle becomes more efficient than the steam cycle.” Hofer’s turbine and casing are made from a nickel-based superalloy because it can handle temperatures as high as 715 degrees Celsius and pressures approaching 3,600 pounds per square inch. “You need a high-strength material for a design like this,” he says.

 Figure 2. GE Global Research engineer Doug Hofer is building a compact and highly efficient turbine that fits on a conference table but can generate 10 megawatts (MW), enough to power 10,000 U.S. homes. The turbine, made from a nickel-based superalloy that can handle temperatures up to 715 degrees Celsius and pressures approaching 3,600 pounds per square inch, replaces steam with ultrahot and superpressurized carbon dioxide, allowing for a smaller design.

The hellish heat and pressure turn CO2 into a hot, dense liquid, allowing Hofer to shrink the turbine’s size and potentially increase its efficiency a few percentage points above where state-of-the-art steam systems operate today. “The pressure and fluid density at the exit of our turbine is two orders of magnitude higher than in a steam turbine,” Hofer says. “Therefore, to push the same mass through, you can have a much smaller turbine because the flow at the exit end is much denser.”

Hofer’s design uses a small amount of CO2 in a closed loop. “It’s important to remember that this is not a CO2 capture or sequestration technology,” he says. Hofer says that the technology, which is being developed as part of GE’s Ecomagination program, could one day start replacing steam turbines. “It’s on the multigenerational roadmap for steam-powered systems,” he says.

By virtue of becoming more efficient, the technology could help power-plant operators reduce greenhouse gas emissions. “The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide,” wrote the authors of the International Energy Agency report on measuring coal plant performance. (3)

Previous Blog Posts on Supercritical Carbon Dioxide:

  1. https://duanetilden.com/2016/11/11/transitioning-oil-gas-wells-to-renewable-geothermal-energy/
  2. https://duanetilden.com/2016/03/13/supercritical-co2-used-for-solar-battery-power-system/
  3. https://duanetilden.com/2015/04/23/doe-invests-in-super-critical-carbon-dioxide-turbine-research-to-replace-steam-for-electric-power-generators/
  4. https://duanetilden.com/2013/10/29/supercritical-co2-refines-cogeneration-for-industry/
  5. https://duanetilden.com/2013/10/29/supercritical-co2-turbine-for-power-production-waste-heat-energy-recovery/
  6. https://duanetilden.com/2013/10/29/waste-heat-recovery-using-supercritical-co2-turbines-to-create-electrical-power/

 

References:

  1. supercritical-carbon-dioxide-power-cycles-starting-to-hit-the-market/
  2. supercritical-carbon-dioxide-can-make-electric-turbines-greener
  3. ecomagination-ge-building-co2-powered-turbine-generates-10-megawatts-fits-table/