Rural Electrification with Renewable Energy Micro-Grids

Pilot Programs to Provide Research of Renewable Energy Solutions for Improved Air Quality  

New Delhi, India— November 19, 2018—ENTRADE and Tata Powered Delhi Distribution Limited (Tata Power-DDL) has commissioned a waste-to-energy testing pilot in conjunction with solar and battery storage research and development at its Rohin-Delhi grid station test facility in New Delhi. Please see video of the Tata Power-DDL pilot currently underway . 

Speaking on the launch of the testing facility, Mr. Praveer Sinha CEO & MD Tata Power said “Rural Electrification is the catalyst to bring economic growth and meeting the socio-economic goals of people living in rural communities. TATA Power is implementing renewable microgrid solutions across rural India. These Microgrid solutions run using Solar systems, Battery storage and Biomass Generation as a novel concept to promote renewable energy. We look forward to this collaboration of Tata Power and ENTRADE in promoting green, affordable and sustainable rural micro-grid power Generation solutions in India.” 

“We started it as an R&D project and soon found that it has a big potential in the rural market particularly for offering inexpensive and sustainable rural micro-grid solutions. The combination of organic waste coupled with solar and battery storage to generate clean energy offers excellent choice to the consumers at a much reasonable price. ” said Mr. Sanjay Banga, CEO, Tata Power-DDL. 

Utilizing the ENTRADE E4 mobile power system, Tata Power-DDL and ENTRADE have built India’s first biomass-to-energy testing facility, showcasing the ability to produce electricity using organic waste as feedstock. Solar panel and battery storage testing will also be conducted at the site. The pilot programs will provide R&D data on clean energy solutions while exploring options for electrification of rural India. The E4 system will be replaced with an EX system in the first quarter of 2019.

A major source of air pollution in the region comes from coal-fired power plants and the testing of renewable energy sources is detrimental to improving air quality. Plans for sourcing local biomass fuels to be converted to clean energy are being considered with the most technologically advanced and fasted growing biomass systems on the market. Long term studies will potentially include waste from agricultural crops. Implications of post pilot opportunities with the abundance of agricultural crops typically burned in the open could provide dramatic air quality improvements for industrial and rural regions. 

“Through our R&D work with Tata Power-DDL, we can help alleviate environmental issues and provide massive new opportunities through this truly groundbreaking technology bringing access to clean energy,” stated Julien Uhlig, CEO of ENTRADE X. “Our decentralized energy systems are not only more cost effective but also provide a fast deployment solution for rural electrification anywhere in the world.” 

https://www.linkedin.com/pulse/tata-power-ddl-entrade-launch-waste-energy-solar-power-julien-uhlig/

Zip Code 00000

Quote

via The 50 Year Underground Coal Mine Fire

“In this part of Pennsylvania, a mine town gone bust is hardly news. But there is none whose demise has been so spectacular and observable. Centralia has been on fire, literally, for the past four decades.

The Centralia mine fire began in 1962 when a pile of burning trash ignited an exposed seam of coal. The fire soon seeped down into the lattice of old mine tunnels beneath town. When it was founded in 1866, Centralia’s ocean of underground coal, aptly named the Mammoth Vein, meant limitless wealth. But once the fire began, it came to mean endless destruction.

This abandoned section of Route 61 runs smack through one of Centralia’s so-called hot zones. In these areas the underground fire directly affects the surface landscape. The traffic that used to flow over this section of road has been permanently detoured several hundred yards to the east. Thanks to a recent snowfall, the tracks of other visitors are obvious — that is until the snow cover abruptly ends. It’s as if someone has drawn a line across the road. On one side there’s snow. On the opposite side there’s bone-dry asphalt. The road’s surface is not exactly warm. But the asphalt is definitely not as cold as it should be on a chilly day in the Appalachian Mountains. In the roadside woods, all the trees are dead, baked to death by the subterranean smolder. Even their bark has peeled away.

Further in, a crack 50 feet in length has ripped through the highway. Puffs of white gas steadily float out. I step to the edge of the crack. It’s about two feet wide and two feet deep, filled with garbage and chunks of broken pavement. Then the wind shifts slightly, and a gas cloud bends in my direction. I cover my nose and mouth with the collar of my jacket. Standing on the roof of this inferno has suddenly lost its appeal. I turn and walk back to my car.”

http://wapo.st/1eMhdGq

Related image

California Water Conservation Causing A Sewer & Plumbing Pipe Crisis

“Shorter showers, more efficient toilets and other reductions in indoor water usage have meant less wastewater flowing through sewer pipes, [California] sanitation officials say. With less flow to flush the solids down the system, those solids are collecting and can eventually damage pipes.”

Sourced through Scoop.it from: www.expresssewer.com

” […]

Less Water Flow Means Greater Pipe Degradation

As home and business owners throughout California use various methods to cut water consumption both in and out of their properties, less water is then available to cycle through sewer systems. Lower sewer flow then makes it difficult for waste materials, oils water and other contaminants to cycle through. Best case scenario, this can result in minor sewer buildup or blockage; worst case, it can cause severe clogging, corrosion and pipe breakage at weak joints.

With corrosion comes increased pipe repair and replacement costs. Otherwise healthy sewer pipes will fail prematurely as clogs and chemicals remain stagnant within pipes.

Decreased water flow due to conservation is a particularly troubling problem in Sacramento, where the municipal sewer system is relatively flat compared to other cities in the state. With a flat sewer system, it is already difficult for water and materials to flow at a normal rate; when this rate is lowered, and gravity cannot help waste and waste water along, there is little to push solid materials along.

The people of Sacramento, in this case, are stuck between a rock and a hard place: water has to be conserved in light of the unrelenting draught, and doing so creates hazards for the entire city sewer system.

Dealing With the Issues

One way Sacramento residents can help reduce the likelihood of sewer clogging during low water flow periods is by changing the way they use their plumbing systems – overall reducing the amount of non-fluid materials that enter sewer systems.

This includes knowing what kinds of things you should not flush or dispose of through the sink, such as:

Baby wipes or other kinds of “flushable” wipes – they’re not really flushable, and actually cause millions of dollars in sewer damage annuallyStarchy food products or peelsAny plastic materials, including wrapping or casesPaper towels

Beyond better flushing practices, also steer clear from using chemicals or commercial drain cleaning products, as these products can eat away at sewer pipes from within, causing extra difficulties for pipes with low-flow or stagnant water. […]”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Bio-Gas Waste Treatment System Installs Remote Fuel Station for Fleet

MADISON, WI–(Marketwired – Mar 3, 2015) – BioCNG, LLC announced that the St. Landry Parish Solid Waste Disposal District’s BioCNG Vehicle Fuel Project, which was fully commissioned in 2012, will be expanded to include an additional BioCNG system and a remote CNG fueling station. BioCNG, which partnered with the District…

Source: www.marketwired.com

>”[…]

The expansion is part of a contract between St. Landry Solid Waste and Progressive Waste Systems. In exchange for continuation of its existing waste hauling contract with the District, Progressive Waste has agreed to purchase new CNG-powered trucks, and will have access to the increased BioCNG generated from the expanded system. The expanded project will also provide BioCNG fuel to additional St. Landry Parish clients.

St. Landry Parish Solid Waste Disposal District executive director Katry Martin, said, “The fact that the hauler that delivers waste to the Parish landfill will fuel its trucks with the biogas generated from the landfill is a true example of the power of renewable energy sources and a preview of the future of biogas.”

The St. Landry Parish BioCNG Vehicle Fuel Project received the U.S. Environmental Protection Agency’s Landfill Methane Outreach Program (LMOP) 2012 Project of the Year award. The system was originally designed to serve public works trucks and the sheriffs’ vehicle fleet. Now, with a new fuel purchaser, the District will increase on-site BioCNG production and provide an off-site CNG fueling station. The District can transport the BioCNG to the off-site location in a compressed gas tube trailer. […]”<

 

See on Scoop.itGreen Energy Technologies & Development

Brewery’s Waste Treatment Bio-Gas Fuel Micro-Turbines for Grid Power

Sierra Nevada taps waste-to-energy technologies as a way to close operational loops and demonstrate responsible brewing practices.

Source: www.rewmag.com

>”[…]

Biogas benefits

Sierra Nevada operates breweries in Chico, California, and in Mills River, North Carolina. While the Chico facility has been in operation since 1980, the Mills River brewery didn’t break ground until 2012. Both facilities operate anaerobic digesters for treating brewery effluent water. Each facility uses the biogas produced from the digesters a little bit differently. In Chico, the biogas is used to offset natural gas production for use in its boilers. The Mills River digester is also used in the boilers but is also being fed into two 200-kilowatt microturbines from Capstone of Chatsworth, California, which will generate electricity to power the operation.

McKay says the first anaerobic digester was installed in Chico in 2002, well before the technology had gained traction in the United States. The digester, manufactured by Veolia Water Technologies subsidiary Biothane, Pennsauken, New Jersey, is an upflow anaerobic sludge bed. The biogas produced from the digestion process is cleaned and treated by a biogas skid designed by Fuel Cell Energy, Danbury, Connecticut, before it is used in the boilers. When the digester was initially installed, Sierra Nevada had planned on using the biogas in its fuel cells, but the inconsistent flow of biogas from the digester was problematic for the fuel cells without a buffer zone.

“We just decided we would send the biogas all to the boilers because the boilers could definitely use it,” says McKay.

The fuel cells were installed in Chico in 2005 and are considered “old technology” by today’s standards, according to McKay. The company is currently deciding on a replacement for the fuel cells which is planned to be completed by the end of the year. Fuel cells, microturbines and other engine technologies have all been considered as potential replacements.

“Ideally we would like to produce electricity from any biogas we are producing at the wastewater treatment plant,” McKay says, adding, “It is fine to use in the boiler, but we would prefer to make electricity because it would be closing the loop a little bit better.” […]”<

See on Scoop.itGreen Energy Technologies & Development