Benchmarking Buildings by Energy Use Intensity (EUI)

There are many metrics and measurements when it comes to evaluating energy as we use it in our daily lives.  In order to compare between different sources or end uses we often have to make conversions in our terms so that our comparisons are equitable.  This may be further complicated as different countries often use different standards of measure, however, we will convert to common units.

Benchmarking

Benchmarking is the practice of comparing the measured performance of a device, process, facility, or organization to itself, its peers, or established norms, with the goal of informing and motivating performance improvement. When applied to building energy use, benchmarking serves as a mechanism to measure energy performance of a single building over time, relative to other similar buildings, or to modeled simulations of a reference building built to a specific standard (such as an energy code). (1)

Benchmarking is a common practice in buildings to establish existing consumption rates and to identify areas that require improvement and to help prioritize improvement projects.  These benchmarks can be established for a building, system within a building, or even a larger campus, facility or power source.  Usually an energy or facility manager will determine energy consumption over a fixed period of time, 1 to 3 years, and compare it to similar facilities.  Normalized by gross square footage of the building the EUI is usually expressed as kBtu/sf per year.

Energy Intensity (EI) of a Country

Figure 1:  Energy Intensity of different economies The graph shows the amount of energy it takes to produce a US $ of GNP for selected countries. (2)

Not to be confused with Energy Use Intensity, Energy Intensity is an economic measure of energy use normalized by the GDP of a country and is considered a measure of a Nation’s Energy Efficiency.  Countries with a high EI have a higher cost to convert energy into GDP, whereas countries with low EI have lower costs of converting energy into GDP.  Many factors contribute to the EI value, including climate, energy sources and  economic productivity. (2)

Energy Use Intensity (EUI)

The EUI of a building includes the electrical power use and heating fuel consumption for heating and hot water generation.  Many facilities require different loads according to their primary use or function, including cooling and refrigeration.  For the comfort of occupants electricity is needed for lighting and plug loads to meet the functioning needs of the equipment in the facility.  Heating, ventilation and air conditioning (HVAC) may require electricity or another fuel such as natural gas.  Hot water may be generated with electricity or a fuel.  A site may also have solar PV or hot water, wind power, and daylighting programs.  There are also many strategies which may be employed by building operators to reduce loads and energy consumption including controls, storage, micro-grid, purchasing offsets, etc.

When comparing buildings, people not only talk about total energy demands, but also talk about “energy use intensity” (EUI).  Energy intensiveness is simply energy demand per unit area of the building’s floorplan, usually in square meters or square feet. This allows you to compare the energy demand of buildings that are different sizes, so you can see which performs better.

EUI is a particularly useful metric for setting energy use benchmarks and goals. The EUI usually varies quite a bit based on the building program, the climate, and the building size. (3)

Image result

Figure 2.  Typical EUI for selected buildings.  This graph is based on research EPA conducted on more than 100,000 buildings (4)

Site Energy vs Source Energy

As we go forward into the future, it is rather unclear how current events will affect the international agreements on reducing carbon consumption.  However, generally speaking, renewable energy sources are seen to becoming more economic for power production.  For many facilities this means that supplementing existing grid sources for power with on-site power production is making economic sense.  Future building improvements may include sub-systems, batteries and energy storage schemes, renewable sources or automated or advanced control systems to reduce reliance on grid sourced power.

The energy intensity values in the tables above only consider the amount of electricity and fuel that are used on-site (“secondary” or “site” energy). They do not consider the fuel consumed to generate that heat or electricity. Many building codes and some tabulations of EUI attempt to capture the total impact of delivering energy to a building by defining the term  “primary” or “source” energy which includes the fuel used to generate power on-site or at a power plant far away.

When measuring energy used to provide thermal or visual comfort, site energy is the most useful measurement. But when measuring total energy usage to determine environmental impacts, the source energy is the more accurate measurement.

Sometimes low on-site energy use actually causes more energy use upstream.  For example, 2 kWh of natural gas burned on-site for heat might seem worse than 1 kWh of electricity used on-site to provide the same heating with a heat pump.  However, 1 kWh of site electricity from the average US electrical grid is equal to 3.3 kWh of source energy, because of inefficiencies in power plants that burn fuel for electricity, and because of small losses in transmission lines.  So in fact the 2 kWh of natural gas burned on site is better for heating. The table below provides the conversion factors assumed by the US Environmental Protection Agency for converting between site and source energy. (3)

References:

(1) BUILDING ENERGY USE BENCHMARKING  https://energy.gov/eere/slsc/building-energy-use-benchmarking

(2) ENERGY INTENSITY  https://en.wikipedia.org/wiki/Energy_intensity

(3) MEASURING BUILDING ENERGY USE  https://sustainabilityworkshop.autodesk.com/buildings/measuring-building-energy-use

(4) WHAT IS ENERGY USE INTENSITY (EUI)?  https://www.energystar.gov/buildings/facility-owners-and-managers/existing-buildings/use-portfolio-manager/understand-metrics/what-energy

Energy Efficiency Sector Ranks #1 in Job Growth by DOE

 

UNEP-Green-Economy-employment-energy-550x242

Figure 1:  Projected Job Growth by Sectors – Green Economy Report, 2011 (1)

WASHINGTON – The U.S. Department of Energy today released the agency’s first annual analysis of how changes in America’s energy profile are affecting national employment in multiple energy sectors. By using a combination of existing energy employment data and a new survey of energy sector employers, the inaugural U.S. Energy and Employment Report (USEER) provides a broad view of the national current energy employment landscape.

USEER examines four sectors of the economy — electric power generation and fuels; transmission, wholesale distribution, and storage; energy efficiency; and motor vehicles — which cumulatively account for almost all of the United States’ energy production and distribution system and roughly 70 percent of U.S. energy consumption. By looking at such a wide portion of the energy economy, USEER can provide the public and policy makers with a clearer picture of how changes in energy technology, systems, and usage are affecting the economy and creating or displacing jobs.

Some key findings of the report include:

3.64 million Americans work in traditional energy industries, including production, transmission, distribution, and storage.
Of these, 600,000 employees contribute to the production of low-carbon electricity, including renewable energy, nuclear energy and low emission natural gas.
An additional 1.9 million Americans are employed, in whole or in part, in energy efficiency.
Roughly 30 percent of the 6.8 million employees in the U.S. construction industry work on energy or building energy efficiency projects.

A copy of the full report is available HERE.

The report also found several energy industries with projected increases in new jobs. Responding to the USEER survey of employers, the energy efficiency sector predicted hiring rates of 14 percent in 2016, or almost 260,000 new hires. Projected hiring rates were at 5 percent within the electric power generation and fuels sector, reflecting overall growth despite a loss of employment in 2015 in the oil and natural gas extraction sectors. Transmission, wholesale distribution, and storage firms anticipate 4 percent employment growth in 2016. Solar energy firms predicted 15 percent job growth over the next year.

Yet even as the report found the opportunity for job growth in many energy sectors, over 70 percent of all employers surveyed found it “difficult or very difficult” to hire new employees with needed skills.

“The transformation of our energy system and the growth of energy efficiency technologies are creating opportunities for thousands of new jobs, especially in energy efficiency and solar,” said David Foster, Senior Advisor on Energy and Industrial Policy at the Department of Energy.  “This report gives an important snapshot of energy employment in America, and subsequent reports will provide better information to guide policies and priorities that create new jobs, appropriately train workers, and promote a successful national energy policy.” …” (1)

“…As a rule of thumb, investment in renewable energy and energy efficiency generate about 3 times the amount of jobs that other energy related investments create (gas, oil, coal, nuclear). Average numbers of jobs created per million euro invested (3CSEP):

  • Building retrofits: 17
  • Renewable energy: 15
  • Coal: 7
  • Oil and gas: 5

[…] (2)

poschen_chart2.jpg

Figure 2:  Job Generators Comparison Chart (3)

“[…] While much of the debate on climate change and employment has focused on renewables, another and more significant source of jobs from decarbonization has received much less attention. Substantial efficiency gains are technically feasible and economically viable in industry, housing, transportation, and services. Businesses can make a profit and households can enjoy real savings. And spending the surplus on things other than fossil energy will boost an economy’s employment.

For example, the United States is a diversified economy that imports substantial amounts of equipment for renewables. A recent study carefully considered economy-wide effects of reducing emissions by 40 percent by 2030 through a mix of clean energy and energy efficiency (Pollin and others, 2014). It concluded that $200 billion a year in investment would generate a net gain of about 2.7 million jobs: 4.2 million in environmental goods and service sectors and their supply chains but 1.5 million lost in the shrinking fossil- and energy-intensive sectors. The net gain of 2.7 million jobs would reduce the unemployment rate in the 2030 U.S. labor market by about 1.5 percentage points—for example, from 6.5 percent to 5 percent. The authors consider this a conservative estimate; for example, it does not take into account the 1.2 to 1.8 million jobs likely gained from reinvested savings.

Other studies show similar results. A review of 30 studies covering 15 countries and the European Union as a whole found appreciable actual or potential net gains in employment (Poschen, 2015). Most studies considering emission targets in line with the ambitions announced for a Paris agreement in December find net gains on the order of 0.5 to 2.0 percent of total employment, or 15 million to 60 million additional jobs. In emerging market economies such as Brazil, China, Mauritius, and South Africa, green investment was found to accelerate economic growth and employment generation when compared with business as usual. Several studies suggest that more ambitious climate targets would generate greater gains in employment (for a discussion of particular countries, see Poschen, 2015). […]” (3)

References:

(1)  http://bit.ly/1RsVAdc

(2) http://1.usa.gov/1Tby7lt

(3) http://bit.ly/1RlUaV8

 

California Water Conservation Causing A Sewer & Plumbing Pipe Crisis

“Shorter showers, more efficient toilets and other reductions in indoor water usage have meant less wastewater flowing through sewer pipes, [California] sanitation officials say. With less flow to flush the solids down the system, those solids are collecting and can eventually damage pipes.”

Sourced through Scoop.it from: www.expresssewer.com

” […]

Less Water Flow Means Greater Pipe Degradation

As home and business owners throughout California use various methods to cut water consumption both in and out of their properties, less water is then available to cycle through sewer systems. Lower sewer flow then makes it difficult for waste materials, oils water and other contaminants to cycle through. Best case scenario, this can result in minor sewer buildup or blockage; worst case, it can cause severe clogging, corrosion and pipe breakage at weak joints.

With corrosion comes increased pipe repair and replacement costs. Otherwise healthy sewer pipes will fail prematurely as clogs and chemicals remain stagnant within pipes.

Decreased water flow due to conservation is a particularly troubling problem in Sacramento, where the municipal sewer system is relatively flat compared to other cities in the state. With a flat sewer system, it is already difficult for water and materials to flow at a normal rate; when this rate is lowered, and gravity cannot help waste and waste water along, there is little to push solid materials along.

The people of Sacramento, in this case, are stuck between a rock and a hard place: water has to be conserved in light of the unrelenting draught, and doing so creates hazards for the entire city sewer system.

Dealing With the Issues

One way Sacramento residents can help reduce the likelihood of sewer clogging during low water flow periods is by changing the way they use their plumbing systems – overall reducing the amount of non-fluid materials that enter sewer systems.

This includes knowing what kinds of things you should not flush or dispose of through the sink, such as:

Baby wipes or other kinds of “flushable” wipes – they’re not really flushable, and actually cause millions of dollars in sewer damage annuallyStarchy food products or peelsAny plastic materials, including wrapping or casesPaper towels

Beyond better flushing practices, also steer clear from using chemicals or commercial drain cleaning products, as these products can eat away at sewer pipes from within, causing extra difficulties for pipes with low-flow or stagnant water. […]”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Transparent Solar Cells Could Turn Office Tower Windows and Mobile Devices Into Power Sources

“It’s a whole new way of thinking about solar energy,” says startup CEO about using transparent solar cells on buildings and electronics.

Sourced through Scoop.it from: news.nationalgeographic.com

>” […] With the help of organic chemistry, transparent solar pioneers have set out to tackle one of solar energy’s greatest frustrations. Although the sun has by far the largest potential of any energy resource available to civilization, our ability to harness that power is limited. Photovoltaic panels mounted on rooftops are at best 20 percent efficient at turning sunlight to electricity.

Research has boosted solar panel efficiency over time. But some scientists argue that to truly take advantage of the sun’s power, we also need to expand the amount of real estate that can be outfitted with solar, by making cells that are nearly or entirely see-through.

“It’s a whole new way of thinking about solar energy, because now you have a lot of potential surface area,” says Miles Barr, chief executive and co-founder of Silicon Valley startup Ubiquitous Energy, a company spun off by researchers at Massachusetts Institute of Technology and  Michigan State University. “You can let your imagination run wild. We see this eventually going virtually everywhere.”

Invisible Spectrum Power

Transparent solar is based on a fact about light that is taught in elementary school: The sun transmits energy in the form of invisible ultraviolet and infrared light, as well as visible light. A solar cell that is engineered only to capture light from the invisible ends of the spectrum will allow all other light to pass through; in other words, it will appear transparent.

Organic chemistry is the secret to creating such material. Using just the simple building blocks of carbon, hydrogen, oxygen, and a few other elements found in all life on Earth, scientists since at least the early 1990s have been working on designing arrays of molecules that are able to transport electrons—in other words, to transmit electric current.  […]

Harvesting only the sun’s invisible rays, however, means sacrificing efficiency. That’s why Kopidakis says his team mainly focuses on creating opaque organic solar cells that also capture visible light, though they have worked on transparent solar with a small private company in Maryland called Solar Window Technologies that hopes to market the idea for buildings.

Ubiquitous Energy’s team believes it has hit on an optimal formulation that builds on U.S. government-supported research published by the MIT scientists in 2011.

“There is generally a direct tradeoff  between transparency and efficiency levels,” says Barr. “With the approach we’re taking, you can still get a significant amount of energy at high transparency levels.”

Barr says that Ubiquitous is on track to achieve efficiency of more than 10 percent—less than silicon, but able to be installed more widely. “There are millions and millions of square meters of glass surfaces around us,” says Barr. […]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Venture Capital from GE, Autodesk Invest in Smart Building Technology Boom

Sales of smart building technologies almost could triple to $17.4 billion between 2014 and 2019. That’s driving a flood of investment from corporations and venture capitalists alike.

Source: www.greenbiz.com

>” […] As of this week, you can add cloud software company Lucid to the list of energy-efficiency startups — particularly those that monitor building power consumption for lighting and climate-control systems — attracting substantial cash infusions this year.

Among those contributing to the $14.2 million Series B round disclosed by Lucid this week: GE Ventures, Autodesk, Formation 8 and Zetta Venture Partners.

Lucid plans to use the new funds for enhancements to BuildingOS, a cloud service that analyzes data from more than 160 hardware and software building technologies.

“Lucid’s technology is rapidly connecting many disparate building systems together, making the vision of truly connected buildings and real-time management possible,” said Ben Sampson, an associate with GE Ventures.

Its reference accounts include Genentech, along with more than a half-dozen educational institutions such as Cornell University and Stanford University.

Lucid joins a respectable list of companies attracting private capital this year, as businesses and organizations become more comfortable with gathering data from the Internet of Things.

Research firm Mercom Capital Group reports that startups focused on smart grid and energy efficiency raised more than $325 million in the first quarter.

Two deals last quarter that explicitly focused on building management or analytics: Blue Pillar, which scored a $14 million deal after more than 250 deployments; and Enbala Power Networks, which raised $11 million.

All told, the last year has been incredibly active in the sector, reaching $944 million in 2014. Those investments covered more than 111 deals at a time when the broader field of cleantech has suffered a decline in available capital, according to a separate report from Lux Research.

“While cleantech is declining from its peak of 291 deals in 2008, building energy deals have risen steadily since then, growing by 208 percent over the same period,” Lux wrote in its presentation about funding trends.

One of the more notable deals over the past two years was Distech Controls, which raised about $37 million in May 2013. […]

Why so active?

The spike in funding reflects the rather bullish revenue projects for building energy management technologies over the next decade. Depending on how broadly you view the market, projections vary dramatically.

If you focus just on building energy management, revenue is likely to reach around $2.4 billion this year, growing almost fivefold to $10.8 billion by 2024, according to the forecast from Navigant Research.

Players in the space include not only a slew of startups, but also multinational companies such as Siemans and Intel.

“Building energy management systems (BEMS) represent an important evolutionary step in the approach to facilities and operations management,” said Casey Talon, senior analyst, commenting on that projection. “As the market matures, more integrated and sophisticated BEMS solutions are delivering energy efficiency improvements while also enabling comprehensive business intelligence and strategic management.”

Indeed, if you consider smart buildings from a more holistic perspective, the growth potential is much larger — up to $17.4 billion by 2019, compared with $6.3 billion last year, according to IDC Energy Insights. In North America, spending is being driven by large corporate operational efficiency initiatives. “<

See on Scoop.itGreen & Sustainable News

Bosch Buys Arizona Building Technology Firm

“Climatec is an independent single-source integrator of critical building systems including energy services, building automation and security system integration in the U.S. market. The company provides consulting, planning, implementation and around-the-clock remote management of comprehensive comfort, security, safety and efficiency solutions. Climatec is active in education, healthcare, the public sector, industrial/manufacturing, computing services, office buildings, federal, state and local government, hospitality and energy.”

TechCentury.com

FARMINGTON HILLS — Farmington Hills-based Robert Bosch North America Corp. has acquired Climatec LLC, a Phoenix, Ariz.-based provider of energy efficiency, building automation, security and safety products and services.

Climatec generated sales of $170 million in 2013, and according to preliminary figures hit $190 million in sales in 2014. The company employs 670 people at 12 offices in Arizona, California, Nevada and Texas.

Climatec has been owned by Pegasus Capital Advisors, L.P. since April 2012. Terms of the transaction were not disclosed.

View original post 501 more words

France now requires all new buildings to have green roofs or solar panels

Sustainability

France just passed atrailblazing new lawthat requires that all new buildings constructed in commercial areas to be partially-covered by either solar panels orgreen roofs. Not only will this bring dramatic changes to the nation?s skylines and bolster the efficiency of all new commercial construction, but the law will help France pick up the pace the solar adoption?which has lagged behind other European nations in recent years.

Read more:France requires all new buildings to have green roofs or solar panels | Inhabitat – Sustainable Design Innovation, Eco Architecture, Green Building



Source: inhabitat.com

“Here’s hoping that other nations can soon follow suit.” I had to go back and dig through my sources to make sure I hadn’t dreamed this!

View original post

LA’s Urban Heat Island Effect Alters Weather

Over the last 60 years urban areas of Southern California have lost significant amounts of fog due to the heat created by paved roads and buildings.

Source: www.scpr.org

>” A new study reports that coastal fog in Southern California is on the decline, especially in heavily urbanized areas.

In particular, Los Angeles saw a 63 percent decrease over the last 60 years.

You can blame the heat island effect created by city streets and buildings, said the study’s author Park Williams of Columbia University’s Lamont-Doherty Earth Observatory in New York.

Fog may be a nuisance for drivers, but according to Williams, it also plays a crucial role in hydrating many costal ecosystems.

These include mountains with coastal forests and hillsides covered in chaparral, which easily burns when conditions are too dry.

“They all receive water directly from fog and benefit from the shading of these clouds,” Williams said.

In fact, he noted that in some parts of Southern California, fog may provide plants with almost as much water as rain does. Williams says this loss of coastal fog could impact the regional environment.

Fog typically forms when the air is cool enough for clouds to condense close to ground level. This often happens at night and in the early morning.

However, Williams said this process is being upset by all the concrete in urban areas, which absorbs heat in the day and slowly releases it over night, raising temperatures.

“When you increase the temperature of the surface of the Earth, then you essentially need to go higher up into the atmosphere before [it] is cool enough to promote condensation,” Williams explained.

The end result is that as cities heat up, clouds rise and fog disappears.

Data for the study came from the detailed logs of the 24 coastal airports between Santa Barbara and San Diego.

“Of course airports have been collecting really good data on clouds because the presence of clouds and their hight in the atmosphere really affects air travel,” he said.

Many of these logs had hourly updates on cloud height, some dating back to the 1940s.

Using this information, Williams and his colleagues determined that the greatest loss of fog occurred in Ontario where there was a nearly 90% decrease over the last 60 years.

Other airports such as LAX, Burbank’s Bob Hope, Long Beach Airport and John Wayne Airport in Orange County also saw a considerable decrease in the average amount of fog.

However, less urban areas like Santa Barbara and the undeveloped the Channel Islands remained quite misty.

Williams says this trend is concerning because man-made climate change is expected to heat things up even more in the future.

Coastal fog can help cool an area down but as cities continue to bake, they will gather and emit even more heat, driving away even more fog.

“That can then feedback until the cloud layer is eaten away entirely in the daytime,” he said.

Soon, Williams hopes to explore how much water fog provides Southern California in general to see whether the continued loss of these low clouds could dry out the region even more.

His current paper appears in the journal Geophysical Research Letters.”<

 

See on Scoop.itGreen & Sustainable News

Net Zero Case Study: Bullitt Center – Green Materials

The Bullitt Center in Seattle, Washington, is one of the most self-sufficient buildings on the planet.  It is net zero energy and, after the water reuse system is approved by city authorities, net zero water.  Net zero means that the building uses the same amount as it creates or generates – it is self-sufficient.

Source: greenbuildingelements.com

>”[…]

Healthy Green Materials

The Living Building Challenge requires projects to avoid as many of the chemicals and substances that are found on the Red List as possible.  These substances have been recognized by government agencies, such as the US Environmental Protection Agency, the European Union Commission, and the State of California, as potentially harmful to human or animal life on Earth.  Not all of the substances can be avoided, though, due to the lack of availability of materials that do not contain them.

The Bullitt Center team avoided over 360 known chemicals on this list.  Some were easy to avoid, as alternatives were readily available.  The team also worked with suppliers to create products that met their requirements, changing the way the products were made and making them available to others.

Most plumbing valves, even those made of brass and bronze, contain up to 7% lead.  Lead free valves, with an allowable lead content of only 0.25%, were used in both the potable and non-potable water systems, including fire sprinklers.Phthalates are commonly used in PVC and other plastic products.  A high-performance water barrier company performed 6 months of research to develop a product that did not contain phthalates, just for the Bullitt Center project.  The new product has now replaced the original version going forward.  Dioxins are a by-product of the manufacture, combustion, and disposal of products containing chlorine, most notably PVC products.  Couplings for no-hub ductile iron pipe are commonly made with neoprene, which contains chlorine.  The team worked with the manufacturer to special order couplings made of EPDM (ethylene propylene diene monomer) rubber.  The electrician was able to find electrical wire not coated in PVC that met code standards.  The fiberglass insulation in the project is held together by a plant-based polymer, not the usual one that contains formaldehyde.

Certified Wood

The Bullitt Center is a wood-framed structure.  Because of its location and the importance of the timber industry in the Pacific Northwest, the project team decided this was the best choice for the project.  100% of the lumber in the building has been harvested from anForest Stewardship Council (FSC) certified source.  The project was also recognized as the only commercial project to receive the Forest Stewardship Council Project Certification, in recognition of responsible forest products use throughout the building.

Local Sourcing

Perhaps the greatest story about green materials and the Bullitt Center involves the curtain wall (window) system.  Due to the high performance needs of the project, only one product could be used, and it was only manufactured in Europe.  A Washington company partnered with the European manufacturer to gain the knowledge to manufacture and install the system in the US.   The Washington company flew their employees over to find out how to make and install the system, and a licensing agreement was reached.  Now this high performance system is available in the US for future projects to use.

[…]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Net Zero Building Nears Completion in Edmonton

the mosaic centre for conscious community and commerce is nearly ready for occupancy, which could make it the most northerly net-zero structure on the planet.

Source: www.journalofcommerce.com

>” […] The Edmonton centre’s designers and builders are hoping that others can learn from the project that sustainable design doesn’t have to be costly or time consuming – so much so that they have made the contract, calculations and drawings available to anyone.

The City of Edmonton said the Mosaic Centre will be the world’s most northerly commercial building to achieve net zero status, the city’s first designated LEED platinum building, the first in Alberta to be petal certified by the Living Building Challenge and Canada’s first triple bottom line commercial building.

Once completed, the new 30,000 square foot building will include  photovoltaic panels that will cover much of the roof.

It will also have LED lighting designed with a time-clock/daylight controller to meet minimum light levels and a geo-exchange system which will draw heat in winter and coolant in summer.

The 32 bore hole geothermal system reduced the size of the system by 40 kW, saving about $150,000.

It was built 25 per cent ahead of schedule and five per cent under budget.

HKA architect Vedran Skopac, who worked on the project, said it was done to prove to the industry that complex, sustainable buildings can be delivered on time, on budget and without animosity between the parties.

He said the key to this all started with using Integrated Project Delivery (IPD).

The model emphasizes collaboration at an early stage and encourages all the participants to use their talents and insights throughout the different stages for best results.

“It goes all the way down to the end of the line of the tradesmen,” Skopac said.

“We invested so much in designing the process, and training and making everyone a leader.”

Skopac said a major influence on designing the actual structure was creating collision spaces, or places where building residents would be forced to meet and interact.

Skopac also wanted to influence sustainable behavior, like making windows easy to operate and open rather than using air conditioning, and making natural light penetrate deep into the building rather than encourage residents to turn on lights. […]”<

See on Scoop.itGreen Building Design – Architecture & Engineering