Mass Transit Prioritized in US Election – $200 Billion Approved by Voters

As gridlock continues to be a problem in the United States, exacerbated by crumbling infrastructure, the American public has reportedly approved up to $200 billion for rapid and mass transit.

According to the American Public Transportation Association (Apta), the 49 ballot measures totalling nearly $US 200bn that were voted on were the largest in history.  […]

The largest measure in the country, Los Angeles County’s Measure M, was passed with 69% approval with all precincts reporting. The sales tax increase needed a two-thirds majority to pass and is expected to raise $US 120bn over 40 years to help fund transport improvement projects, including Los Angeles County Metropolitan Transportation Authority (LACMTA) schemes to connect Los Angeles International Airport to LACMTA’s Green Line, Crenshaw/LAX line and bus services; extend the Purple Line metro to Westwood; extend the Gold Line 11.7km; extend the Crenshaw Line north to West Hollywood; and build a 6.1km downtown light rail line. The measure will also provide $US 29.9bn towards rail and bus operations, and $US 1.9bn for regional rail.

California’s other big transit wins include Measure RR in the San Francisco Bay area, which will authorise $US 3.5bn in bonds for Bay Area Rapid Transit rehabilitation and modernisation. It required a cumulative two-thirds vote in San Francisco, Alameda and Contra Costa counties for passage and received 70% approval. (1)

Image result for BART train

Figure 1.  Bay Area Rapid Transit (2)

 

BART’s Focus on Material Conservation, Energy Savings and Sustainability

BART’s infrastructure requires the train cars to be extremely lightweight. To meet this requirement, most of the exterior of the new train cars will be constructed out of aluminum. Aluminum is abundant, doesn’t rust, and when properly finished, reflects heat and light, keeping the train cars cool. It is lightweight but strong, yet fairly easy to work with, reducing the energy investment during the manufacturing process. Additionally, aluminum is easily and readily recyclable, making it very low impact when the train cars are eventually retired and dismantled.  (2)

Federal Investment in Rapid Transit and Transportation Infrastructure Lagging

Yet, despite the public’s continued desire to see greater investment in transit, historically transit has received only a small minority of funding at the federal level. Currently, only 20 percent of available federal transportation funds are invested in transit and just 1 percent of funds are invested in biking and walking infrastructure. Meanwhile, 80 percent of federal transportation dollars continue to be spent on roads.

“While many localities recognize the need to invest in transit, biking, and pedestrian solutions that can bring our transportation system into the 21st century, federal officials remain woefully behind the curve,” said Olivieri. “While it is great to see such widespread support of transit at the local level, the need for these measures speaks volumes about how out of sync federal decision makers are with the wants and needs of the American people,” he added.

The nation currently faces an $86 billion transit maintenance repair backlog, while data from the Federal Highway Administration’s National Bridge Inventory show that despite the large discrepancy at the federal level between investment in transit and spending on roads, the nation’s road system is in similarly bad shape. To date, more than 58,000 bridges remain structurally deficient.

“Despite the fact that roads receive 80 percent of available federal transportation dollars, both transit and roads continue to face enormous repair and maintenance backlogs,” said Lauren Aragon, Transportation Fellow at U.S. PIRG. “While the overall level of funding is important, how states spend the limited federal funding they receive can have even greater consequences but states continue to funnel road funding into new and wider highway projects, leaving the existing system to crumble. We need to fix what we have already built first,” she added.  (3)

MAY15_11_000001667330

Figure 2. Typical image of steel bridge in disrepair (4)

 

Harvard Business Review Reports on Crumbling American Infrastructure

Bridges are crumbling, buses are past their prime, roads badly need repair, airports look shabby, trains can’t reach high speeds, and traffic congestion plagues every city. How could an advanced country, once the model for the world’s most modern transportation innovations, slip so badly?

The glory years were decades ago. Since then, other countries surpassed the U.S. in ease of getting around, which has implications for businesses and quality of life. For example, Japan just celebrated the 50thanniversary of its famed bullet train network, the Shinkansen. Those trains routinely operate at speeds of 150 to 200 miles per hour, and in 2012, the average deviation from schedule was a miniscule 36 seconds. Fifty years later, the U.S. doesn’t have anything like that. Amtrak’s “high-speed” Acela between Washington, D.C., and Boston can get up to full speed of 150 mph only for a short stretch in Rhode Island and Massachusetts, because it is plagued by curves in tracks laid over a century ago and aging components, such as some electric overhead wiring dating to the early 1900s.

Numerous problems plague businesses and consumers: Goods are delayed at clogged ports. Delayed or cancelled flights cost the U.S. economy an estimated $30-40 billion per year – not to mention ill will of disgruntled passengers. The average American wastes 38 hours a year stuck in traffic. This amounts to 5.5 billion hours in lost U.S. productivity annually, 2.9 gallons of wasted fuel, and a public health cost of pollution of about $15 billion per year, according to Harvard School of Public Health researchers. The average family of four spends as much as 19% of its household budget on transportation. But inequality also kicks in: the poor can’t afford cars, yet are concentrated in places without access to public transportation. To top it all, federal funding for highways, with a portion for mass transit, is about to run out.  (4)

 

References:

(1)  Nearly 70% of US transit ballot measures pass;  http://www.railjournal.com/index.php/north-america/nearly-70-of-us-transit-ballot-measures-pass.html

(2)  BART – New Train Car Project;  http://www.bart.gov/about/projects/cars/sustainability

(3)  BILLIONS IN TRANSIT BALLOT INITIATIVES GET GREEN LIGHT;  http://www.uspirg.org/news/usp/billions-transit-ballot-initiatives-get-green-light

(4)  What It Will Take to Fix America’s Crumbling Infrastructure;  https://hbr.org/2015/05/what-it-will-take-to-fix-americas-crumbling-infrastructure

Aluminum, a Quantum Leap in Renewable Energy Storage

The future for the metal aluminum has never looked better, for the great investment it represents as a multi-faceted energy efficiency lending material, electrical energy storage medium (battery), and for the advancement of renewable energy sources.  These are spectacular claims, and yet in 1855 aluminum was so scarce it sold for about 1200 $/Kg (1) until metallurgists Hall & Heroult invented the modern smelting process over 100 years ago (2).

Image result for aluminum electrolysis

Figure 1.  Schematic of Hall Heroult Aluminum Reduction Cell (3)

 

Aluminum is an energy intensive production process.  High temperatures are required to melt aluminum to the molten state.  Carbon electrodes are used to melt an alchemical mixture of alumina with molten cryolite, a naturally occurring mineral.  The cryolite acts as an electrolyte to the carbon anode and cathodes.  Alumina (Al2O3) also known as aluminum oxide or Bauxite is fed into the cell and dissolved into the cryolite, over-voltages reduce the Al2O3 into molten aluminum which pools at the bottom of the cell and is tapped out for further refining.

Aluminum Smelting Process as a Battery

The smelting of Aluminum is a reversible electrolytic reaction, and with modifications to current plant design it is possible to convert the process to provide energy storage which can  be tapped and supplied to the electrical grid when required.  According to the research the biggest challenge to this conversion process is to maintain heat balances of the pots when discharging energy to prevent freeze-up of the cells.  Trimet Aluminum has overcome this problem by incorporating shell heat-exchange technology to the sides of the cell to maintain operating temperatures.  Trial runs with this technology have been positive where plans are to push the technology to +/- 25% energy input/output.  If this technology is applied to all 3 Trimet plants in Germany, it is claimed that up to 7700 MWh of electrical storage is possible (4).

Trimet Aluminum SE, Germany’s largest producer of the metal, is experimenting with using vast pools of molten aluminum as virtual batteries. The company is turning aluminum oxide into aluminum by way of electrolysis in a chemical process that uses an electric current to separate the aluminum from oxygen. The negative and positive electrodes, in combination with the liquid metal that settles at the bottom of the tank and the oxygen above, form an enormous battery.

By controlling the rate of electrolysis, Trimet has been able to experiment with both electricity consumption and storage.  By slowing down the electrolysis process, the plant is able to adjust its energy consumption up and down by roughly 25 percent.  This allows the plant to store power from the grid when energy is cheap and abundant and resell power when demand is high and supply is scarce. (5)

Related image

Figure 2. TRIMET Aluminium SE Hamburg with emission control technology (6)

 

Image result

Figure 3.  Rio Tinto Alcan inaugurates new AP60 aluminum smelter in Quebec (7)

Aluminum as a Material and it’s Energy Efficiency Properties

Aluminum and it’s alloys generally have high strength-to-weight ratio’s and are often specified in the aircraft industry where weight reduction is critical.  A plane made of steel would require more energy to fly,  as the metal is heavier for a given strength.  For marine vessels, an aluminum hull structure, built to the same standards, weighs roughly 35% to 45% less than the same hull in steel (8). Weight reduction directly converts to energy savings as more energy would be required to propel the aircraft.

Other modes of transportation, including automobiles, trucking, and rail transport may similarly also benefit from being constructed of lighter materials, such as aluminum.  Indeed this would continue the long-standing trend of weight reduction in the design of vehicles.  The recent emergence of electric vehicles (EV’s) have required weight reduction to offset the high weight of batteries which are necessary for their operations.  The weight reduction translates into longer range and better handling.

Image result

Figure 4.  Tesla Model S (9)

 

In the 1960s, aluminium was used in the niche market for cog railways. Then, in the 1980s, aluminium emerged as the metal of choice for suburban transportation and high-speed trains, which benefited from lower running costs and improved acceleration. In 1996, the TGV Duplex train was introduced, combining the concept of high speed with that of optimal capacity, transporting 40% more passengers while weighing 12% less than the single deck version, all thanks to its aluminium structure.

Today, aluminium metros and trams operate in many countries. Canada’s LRC, France’s TGV Duplex trains and Japan’s Hikari Rail Star, the newest version of the Shinkansen Bullet train, all utilize large amounts of aluminium.  (10)

Image result

Figure 5.   Image of Japanese Bullet Train  (11)

Aluminum For Renewable Energy

One of the biggest criticisms against renewable technologies, such as solar and wind has been that they are intermittent, and not always available when demand demand for energy is high.  Even in traditional grid type fossil fuel plants it has been necessary to operate “peaker plants” which provide energy during peak times and seasons.

In California, recent technological breakthroughs in battery technology have been seen as a means of providing storage options to replace power plants for peak operation. However, there remains skepticism that battery solutions will be able to provide the necessary storage capacity needed during these times (12).  The aluminum smelter as an energy provider during these high demand times may be the optimum solution needed in a new age renewables economy.

The EnPot technology has the potential to make the aluminium smelting industry not only more competitive, but also more responsive to the wider community and environment around it, especially as nations try to increase the percentage of power generated from renewable sources.

The flexibility EnPot offers smelter operators can allow the aluminium industry to be part of the solution of accommodating increased intermittency.  (13)

References:

(1)  http://www.aluminum-production.com/aluminum_history.html

(2)  http://www.aluminum-production.com/Basic_functioning.html

(3)  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532000000300008

(4)  The ‘Virtual Battery‘ – Operating an Aluminium Smelter with Flexible Energy Input.  https://energiapotior.squarespace.com/s/Enpot-Trimet-LightMetals2016.pdf

(5)  http://www.metalsproclimate.com/metals-pro-climate/best-practice/reduction-of-pfc-process-emissions

(6) http://www.sauder.ubc.ca/Faculty/Research_Centres/Centre_for_Social_Innovation_and_Impact_Investing/Programs/Clean_Capital/Clean_Capital_News_Archive_2014/Aluminum_smelters_could_act_as_enormous_batteries

(7)  http://www.canadianmetalworking.com/2014/01/rio-tinto-alcan-inaugurates-new-ap60-aluminum-smelter-in-quebec/

(8)  http://www.kastenmarine.com/alumVSsteel.htm

(9)  http://www.greencarreports.com/news/1077672_2012-tesla-model-s-is-aluminum-its-secret-weapon

(10)  http://transport.world-aluminium.org/en/modes/trainssubways.html

(11)  http://www.aluminiumleader.com/focus/aluminium_carriages_help_provide_high_speed_rail_service/

(12)  http://www.bloomberg.com/news/articles/2015-12-22/batteries-gaining-favor-over-gas-peaker-plants-in-california

(13)  http://www.energiapotior.com/the-virtual-battery

Transitioning Oil & Gas Wells to Renewable Geothermal Energy

Infinity Turbine 2016 ROT IT50

Figure 1:  Radial Outflow Turbine Generator – Organic Rankine Cycle – ORC Turbine (1)

Existing oil and gas wells offer access to untapped sources of heat which can be converted to electricity or used for other energy intensive purposes.  This includes many abandoned wells, which can be reactivated as power sources.  These wells, in many cases “stranded assets” have been drilled, explored, and have roads built for access.  This makes re-utilization of existing infrastructure cost-effective while minimizing harm to the environment associated with exploration.

In a recently published article in Alberta Oil, an oil & gas industry magazine they point out many of the benefits of converting existing and abandoned wells to geothermal energy.

A recent Continental Resources-University of North Dakota project in the Williston Basin is producing 250 kW of power from two water source wells. The units fit into two shipping containers, and costs US$250,000. This type of micro-generation is prospective in Alberta, and a handful of areas also have potential for multi-MW baseload power production.

In addition to producing power, we can use heat for farming, greenhouses, pasteurization, vegetable drying, brewing and curing engineered hardwood. Imagine what Alberta’s famously innovative farmers and landowners would accomplish if they were given the option to use heat produced from old wells on their properties. Northern communities, where a great many oil and gas wells are drilled nearby, can perhaps reap the most benefits of all. Geothermal can reduce reliance on diesel fuel, and provide food security via wellhead-sourced, geothermally heated, local greenhouse produce. (2)

Water can be recirculated by pumps to extract heat from the earth, and through heat exchangers be used as a source of energy for various forms of machines designed to convert low grade waste heat into electricity.  The Stirling Cycle engine is one such mechanical device which can be operated with low grade heat.  However recent developments in the Organic Rankine Cycle (ORC) engine seem to hold the greatest promise for conversion of heat to electricity in these installations.

In a “boom or bust” industry subject to the cycles of supply and demand coupling a new source of renewable energy to resource extraction makes sense on many fronts.  It could be an economic stimulus not only to the province of Alberta, but throughout the world where oil and gas infrastructure exists, offering new jobs and alternative local power sources readily available.

References:

(1)  http://www.infinityturbine.com/

(2)  http://www.albertaoilmagazine.com/2016/10/geothermal-industry-wants-abandoned-wells/

Related Blog Posts:

  1. https://duanetilden.com/2016/01/14/alberta-energy-production-and-a-renewable-future/
  2. https://duanetilden.com/2014/12/21/renewable-geothermal-power-with-oil-and-gas-coproduction-technology-may-be-feasible/
  3. https://duanetilden.com/2015/07/25/a-new-era-for-geothermal-energy-in-alberta/
  4. https://duanetilden.com/2015/07/27/oil-well-waste-water-used-to-generate-geothermal-power/
  5. https://duanetilden.com/2013/10/29/supercritical-co2-refines-cogeneration-for-industry/

The End of Oil Domination? – German Government Votes to Ban Sales of ICE Vehicles by 2030

aid_diesel-2

Figure 1:  Chart showing recent drop in Diesel Car sales, AID Newsletter

 

“[…] Germany’s Bundesrat has passed a resolution to ban the internal combustion engine starting in 2030,Germany’s Spiegel Magazin writes. Higher taxes may hasten the ICE’s departure.

An across-the-aisle Bundesrat resolution calls on the EU Commission in Brussels to pass directives assuring that “latest in 2030, only zero-emission passenger vehicles will be approved” for use on EU roads. Germany’s Bundesrat is a legislative body representing the sixteen states of Germany. On its own, the resolution has no legislative effect. EU type approval is regulated on the EU level. However, German regulations traditionally have shaped EU and UNECE regulations.

EU automakers will be alarmed that the resolution, as quoted by der Spiegel, calls on the EU Commission to “review the current practices of taxation and dues with regard to a stimulation of emission-free mobility.”

  • “Stimulation of emission-free mobility” can mean incentives to buy EVs. Lavish subsidies doled out by EU states have barely moved the needle so far.
  • A “review the current practices of taxation and dues” is an unambiguously broad hint to end the tax advantages enjoyed by diesel in many EU member states. The lower price of diesel fuel, paired with its higher mileage per liter, are the reason that half of the cars on Europe’s roads are diesel-driven. Higher taxes would fuel diesel’s demise. […]

With diesel already on its tipping point in Europe, higher taxes and increased prices at the pump would be the beginning of the fuel’s end. As evidenced at the Paris auto show, the EU auto industry seems to be ready to switch to electric power, and politicians just signaled their willingness to force the switch to zero-emission, if necessary. Environmentalists undoubtedly will applaud this move, and the sooner diesel is stopped from poisoning our lungs with cancer-causing nitrous oxide, the better. Cult-like supporters of electric carmaker Tesla will register the developments with trepidation.

When EU carmakers are forced by law to produce the 13+ million electric cars the region would need per year, the upstart carmaker would lose its USP, and end up as roadkill. Maybe even earlier. Prompted by a recent accident on a German Autobahn, experts of Germany’s transport ministry declared Tesla’s autopilot a “considerable traffic hazard,” Der Spiegel wrote yesterday.Transport Minister Dobrindt so far stands between removing Germany’s 3,000 Tesla cars from the road, the magazine writes. Actually, until the report surfaced, the minister’s plan was to subsidize Autopilot research in Germany’s inner cities. “Let’s hope no Tesla accident happens,” the minister’s bureaucrats told Der Spiegel. It happened, but no-one died.”

Via Forbes:  http://bit.ly/2e8HSQf

 

Shipping’s Growing Carbon Gap

Transport's Carbon & Energy Future

sinking_container_ship

On the face of it, Shipping is the most efficient of freight transport modes. Intermodal shipping containers kick-started rapid growth in trade globalisation 60 years ago, and container ships, tankers and bulk carriers have been getting bigger ever since. Carrying more freight with less fuel on a tonne-mile basis, shipping has the highest energy productivity of all transport modes.

Yet looks can be deceiving. While international shipping contributes 2.4% of global greenhouse gas emissions, business-as-usual could see this explode to a whopping 18% by 2050. As trade growth increases demand, today’s fleet burns the dirtiest transport fuels, and a new report shows the market doesn’t reward ship owners who invest in the latest fuel- and carbon-efficient technologies.

When you consider the scale of the sector’s emission reductions that need to start now to contribute to the COP 21 Paris Agreement target of 1.5°C to 2°C global warming, there’s clearly an…

View original post 604 more words

The “fuel” that’s helping America fight climate change isn’t natural gas

Power for the People VA

You’ve heard the good news on climate: after a century or more of continuous rise, U.S. CO2 emissions have finally begun to decline, due largely to changes in the energy sector. According to the Energy Information Agency (EIA), energy-related CO2 emissions in 2015 were 12% below their 2005 levels. The EIA says this is “because of the decreased use of coal and the increased use of natural gas for electricity generation.”

Is the EIA right in making natural gas the hero of the CO2 story? Hardly. Sure, coal-to-gas switching is real. But take a look at this graph showing the contributors to declining carbon emissions. Natural gas displacement of coal accounts for only about a third of the decrease in CO2 emissions.

Courtesy of the Sierra Club Beyond Coal Campaign, using data from the Energy Information Agency. Courtesy of the Sierra Club Beyond Coal Campaign, using data from the Energy Information Agency.

By far the biggest driver of the declining emissions is energy efficiency. Americans…

View original post 746 more words

Urbane Legends

Is Climate Change an Urban Legend?

US Issues

By Willis Eschenbach – Re-Blogged From http://www.WattsUpWithThat.com

So we were sitting around the fire at the fish camp on the Colombia a few days ago, and a man said “Did you hear about the scientific study into meat preservatives?” We admitted our ignorance, and he started in. The story was like this:

“A few years ago there was a study done by some University, I can’t remember which one, but it was a major one. What they did was to examine the corpses of people who had died in Siberia, and those that had died in Washington State. Now of course the people in Siberia weren’t eating meat preservatives during their lives, and the Washington people were eating them. And when they dug up the graves and looked at the bodies, guess what they found?” 

the killer in the back seatUrban Legend: The Killer In The Back Seat SOURCE 

View original post 1,264 more words

Low Coal Prices Fuel Demand as Trading Volumes Soar 46%

coal-trains

Image Source:  Power Plant Men

Coal leads surge in European energy exchange trading in first half 2016 -study

Wholesale trading of coal on the exchanges soared 46 percent from a year earlier to 3.5 billion tonnes

FRANKFURT: Coal lead a surge in trading volumes on west European energy exchanges in the first half of this year as traders took advantage of low commodity prices, research company Prospex said on Monday.

Wholesale trading of coal on the exchanges soared 46 percent from a year earlier to 3.5 billion tonnes, according to Prospex.

“Low coal prices mean a fixed amount of trading capital will buy higher volumes than it did in the past,” said Prospex Research director Ben Tait.

“In fact, many traders seeking to hit absolute profit targets have indeed ramped up volumes,” he said.

Prospex’s data covers volumes on what traders call the paper market, where two parties agree deals in the over-the-counter (OTC) market and have them cleared by an exchange.

In coal, this type of business accounts for 98 percent of volumes changing hands in Europe.

Prospex said commodity trading houses remain keen on coal, with some holding extensive physical coal interests that play out on the dominant Amsterdam-Rotterdam-Antwerp (ARA) region of ports that serve Europe’s power stations and steelmakers with raw material.  Read more:  Full Article

 

There Are 9.93 Million More Government Workers Than Manufacturing Workers

STRAIGHT LINE LOGIC

An interesting chart from Anthony B. Sanders at davidstockmanscontracorner.com:

The August jobs report was filled with some interest factoids, like there are now 9.93 million government workers than there are manufacturing workers.

That is a ratio of 1.81 government workers for every manufacturing worker.

Such was not always the case. But a variety of factors such as labor cost differentials, EPA regulations and taxes had led to manufacturing jobs to be sent overseas.

Now a 1.81 government to manufacturing employment ratio is called OVERHEAD. And you wonder why high paying manufacturing jobs are fleeing to other countries?

http://davidstockmanscontracorner.com/there-are-9-93-million-more-government-workers-than-manufacturing-workers/

View original post