Three Common Mistakes in Wireless Systems Design for Buildings

Although cellular and WiFi networks are not required by code, they are crucial for communication. More than 400,000 wireless E-911 calls are made every day…

 

Image Source:  http://bit.ly/1EqvCDv

Source: www.facilitiesnet.com

>” MISTAKE 1: Thinking it’s someone else’s problem.

Don’t let your architect avoid the issue. Design a building with adequate wireless coverage for public safety, cellular, and WiFi. […] WiFi networks are also widely used for Internet traffic and to support building management systems (BMS), Smart Grid, point of sales, audio visual, security, and more. The impact of wireless devices is only expected to increase. Mobile devices are expected to account for 61 percent of worldwide Internet traffic by 2018, compared to 39 percent from wired devices, according toCisco.

MISTAKE 2: Confusion.

Confusing the types of wireless technologies available and/or facility requirements is another pitfall. You don’t want to plan for one type and learn later that technology for common functions is missing. Technologies have different requirements for power, spacing between devices, type of cables, head-end requirements, etc. Therefore, a key factor is to understand each technology thoroughly so it can be planned and implemented properly.

To put it briefly, there are two major wireless technologies — WSP, which are your wireless carriers networks (AT&T, T-mobile ,Verizon, etc.), and WiFi technology, which is a wireless local area network (WLAN) based on Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards.

Both of these transmit via radio frequencies. WiFi (WLAN), however, uses an unlicensed spectrum that transmits at frequencies 2.4GHz and 5 GHz, which are considerably higher frequencies than used for cellular service, which is on a licensed spectrum transmitting within 698MHz-2.7GHz.

MISTAKE 3: Bad budgeting.

Often, contractors develop their budget based on square footage, but wireless isn’t so simple. The price can vary significantly based on the complexity of the needs, the supporting frequencies, coverage area, number of users, and more. By developing preliminary wireless design, IT consultants can provide the owner/operators with a more accurate cost.

Regardless of the facility, it’s no longer a matter of if wireless will be required, just a question of whether you want to plan early before you build, or pay a premium later. IT consultants can help facility managers plan, select the best wireless options to meet end-user needs, and stay to up-to-date with local codes (where required). Furthermore, an IT consultant can better develop a realistic wireless budget for the owner and provide the architect-engineer-construction team with infrastructure requirements, such as pathways, telecom room sizes and locations, power, and cooling, without sacrificing the architect’s vision. Generically speaking, the fee for an IT consultant is insignificant to the overall project cost, and may ultimately save the owner money and headache. Be prepared for what’s to come. Overlooking this need early can often cause a major regret later.

Gislene D. Weig, electrical engineer, RCDD, is a senior consultant at PlanNet Consulting, where her core business involves U.S. and Latin American markets focused on large-scale projects that include voice/data, wired and wireless communication systems, and data network design. She can be reached at gweig@plannet.net.”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Microsoft Uses Big Data To Manage Buildings and Facilities

MicrosoftCampus

“My initial expectation was that we would see the return on investment in terms of driving down our energy costs, and we have seen that,” says Pittenger, to whom Smith reports. “What wasn’t part of my expectations was the gains we would have in operational efficiencies and our abilities to do repairs and maintenance much, much better and much, much smarter.”

Source: www.facilitiesnet.com

Image:  http://news.microsoft.com/2009/11/23/california-coding-microsoft-campus-in-silicon-valley-turns-10/

>” […] Over those 125 buildings on the main Microsoft campus, there are more than 30,000 building systems components — assets, in Smith’s terms — and more than 2 million points where building systems ranging from HVAC to lighting to power monitoring are connected to sensors. In a 24-hour period, those systems produce half a billion data transactions. Each one is small, but when you’re talking about half a billion of something, all those 1s and 0s add up pretty quickly.

But what’s important is being able to do something with those 1s and 0s, which Microsoft could not do until recently because of the mess of systems involved, says Jim Sinopoli, managing principal, Smart Buildings, who helped set up the software pilot program.

“You have an opportunity, if you’re building a new campus or a new building, to really start with a clean slate,” he says. “But you go in these existing buildings and you generally will come upon some unforeseen obstacles.”

The project turned out to be a relatively easy sell. First, Pittenger’s background is financial, so being able to show a strong ROI was a definite plus for Smith, because his boss understands exactly what that means when it comes time to ask for funding. Second, facilities management at Microsoft benefits from a company culture that considers every department to be a key player.

“(CEO) Steve Ballmer likes to say, ‘There are no support organizations at Microsoft,'” Pittenger says. “Everybody is fundamental to the core mission of the company. And we feel that way.”

After gaining approval, the first step was deciding how those obstacles would be overcome. Smith and his team began by writing out 195 requirements for the new way of operating and what their ultimate tool would be able to do. Then they proceeded to look around for an off-the-shelf solution that would be able to do all those things — and failed to find one. So, they built it.

More specifically, they worked with three vendors in a pilot program, encompassing 2.6 million square feet, to build an “analytics blanket” of fault detection algorithms that is layered on top of the different building management systems and reports back to the operations center. If Building 17 and Building 33 have different building management systems, those systems may not be able to talk to each other or provide data to a single reporting system in the operations center. But they can talk to the analytics blanket, which can take the information from every building and combine it into a single output in the operations center. It’s not a replacement for the BMS; instead, it’s adding on functionality that enhances the benefits of the existing BMS.”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning