5 Steps to Designing a Net Zero Energy Building

designrealizedblog

Net zero energy buildings are really just becoming a reality. According to a 2012 Getting to Zero Report by the New Buildings Institute (NBI) and the Zero Energy Commercial Consortium (CBC), 99 commercial buildings have been identified from around the country that are net zero energy performing, zero-energy capable, or are in construction and on their way. And this is just what they know about.

As the industry continues to embark on net zero energy buildings, architecture firms are learning a lot about what it takes to make them reality. San Francisco-based EHDD is one such firm. For nearly a decade they have been designing with net zero in mind.

Sample breakdown of a building's energy use from EHDD. Sample breakdown of a building’s energy use from EHDD.

According to Brad Jacobson, a Senior Associate at EHDD and recognized leader in sustainable design, “Working on sustainability doesn’t have to be at all about sacrifice. It’s about finding solutions that…

View original post 396 more words

Advertisement

Manufacturer Installs 10 ORC “Machines” to Municipal District Heating System in Europe

RENO, NV–(Marketwired – Aug 7, 2014) – ElectraTherm, a leader in distributed heat to power generation, commissioned 10 Green Machine 4400s in Levice, Slovakia in June 2014.

Source: www.cospp.com

>”[…]The 10-machine installation utilizes the waste heat from two Rolls Royce gas turbines through a combined cycle. Exhaust from the turbines goes through a heat recovery steam generator, and lower temperature exhaust gas that cannot be utilized produces hot water to meet demand for heating on the municipality’s district heating system. The remaining heat runs through ElectraTherm’s Green Machines to generate clean energy and attain attractive feed-in-tariff incentives.

Hot water enters the Green Machine at between 77-116°C (170-240°F), where it heats a working fluid into pressurized vapor, using Organic Rankine Cycle (ORC) and proprietary technologies. As the vapor expands, it drives ElectraTherm’s patented twin screw power block, which spins an electric generator and produces emission free power. Run in parallel, the Green Machines in Levice generate approximately 500 kWe. While combined cycle gas turbines are widely used throughout Europe for power generation and district heating, this is the first application of its kind to utilize ElectraTherm’s ORC technology for the lower temperature waste heat.

The Green Machines help the site reach maximum efficiency levels through heat that would otherwise go to waste. ElectraTherm’s Green Machine generates power from waste heat on applications such as internal combustion engines, biomass, geothermal/co-produced fluids and solar thermal. ElectraTherm’s product line includes units with 35, 65 and 110 kW outputs and offers stand alone or packaged solutions. Read more about Green Machine products at http://electratherm.com/products/.  […]”<

See on Scoop.itGreen Energy Technologies & Development

Renewable Geothermal Power Expands in Nevada

Geothermal energy is a growing industry, with more plants going into Nevada’s mostly untapped resource.

Source: www.ktvn.com

Geothermal energy is a growing type of clean energy, and nowhere is that more true than in Nevada. Ormat Technologies has built a geothermal plant every year since 2005.  […]

“This is what the future is going to bring,” Gawell said. “You will see more and more of this in years ahead and it is already a boom for Reno.”

The Steamboat Complex is a binary plant that takes hot water from deep underground, to produce power.

“We convert the heat that’s in the fluid to electrical energy,” Bob Sullivan, Senior Vice President of Ormat Technologies said. “Then we put all the fluids back into the ground where it gets reheated. So, it’s a sustainable cycle.”  […]

Along with electricity, these facilities create economic development, putting hundreds of people to work, drilling wells and building the plants.   About 500 people have permanent jobs with Ormat, in the United States.  Another 500 people work for the company around the world.

“It’s a job engine,” Sullivan said. “It takes a lot of maintenance. It takes a lot of people. It takes a lot of workers, a lot of subcontractors to keep one of these facilities running.”

While the cost of fossil fuels goes up and down, geothermal stays steady. The fuel cost is upfront, in the form of drilling wells. Gawell says what is lost in capital and labor costs is saved in fuel costs. […]”<

See on Scoop.itGreen Energy Technologies & Development

Energy Efficiency and Renewables Drives Smart Grid Technologies Market – Research & Developments

The market for smart grid technologies is evolving rapidly as the need for a more responsive, automated power grid rises worldwide.  …

Source: www.navigantresearch.com

>”The fundamental technology for injecting intelligence into the grid has been in existence for years – more than a decade in some cases. However, the past 18 to 24 months have seen accelerating technological advancements and shifting priorities among utility industry stakeholders.

Transmission system upgrades are driven by the need to interconnect offshore or remote wind and solar farms, as well as ongoing electrification across Asia Pacific and developing regions. Falling costs for devices and communications networking, combined with the increasing emphasis on reliability and energy efficiency, will lead to robust growth in the substation and distribution automation (SA and DA) markets. Meanwhile, government mandates, especially in Europe, will drive strong smart meter penetration gains over the next decade. At the same time, utilities are facing more competition than ever and squeezed margins. These issues, along with the proliferation of smart devices in the grid, will drive impressive growth in demand for more powerful utility IT solutions and analytics. Navigant Research forecasts that global smart grid technology revenue will grow from $44.1 billion in 2014 to $70.2 billion in 2023.

This Navigant Research report analyzes the global market for smart grid technologies, with a focus on transmission upgrades, SA, DA, information and operations technology (IT/OT) software and services, and advanced metering infrastructure (AMI). The study provides a detailed analysis of the market drivers, challenges, and trends, as well as regional and country factors, for each smart grid technology segment. Global market forecasts for revenue, broken out by technology, application, component, and region, extend through 2023. The report also provides profiles of key grid infrastructure vendors and includes information on 150-plus other types of companies, major global utilities, and smart grid-related industry associations.

Key Questions Addressed:

Which smart grid technology segments are the largest and how quickly are they expected to grow?

What are the key market drivers and challenges for each smart grid technology segment?

What are the most important new trends affecting the pace of investment in smart grid technologies?

What regional factors are affecting the pace of investment in smart grid technology?

Who are the key vendors in each category of smart grid technology?   […] “<

See on Scoop.itGreen Energy Technologies & Development

Sustainability and Development – Defining Relationships between Humanity, Energy and the Natural World

A new ‘Zeitgeist’ is increasingly taking hold in growing pockets of society, politics and the business world. All indications point to one direction – towards the concept of ‘sustainability’ dominating human behavior and thinking in the twenty-first century.

Source: breakingenergy.com

>”As the urbanization wave around the globe rolls on, megacities are increasingly becoming the epicenter of human life and economic activity for billions of people. Inevitably, this trend will bring about new challenges and exacerbate looming, well-known challenges such as climate change. As the World Economic Forum notes in a newly-released report on “The Competitiveness of Cities”: “Cities are especially intensive users of energy, food and water, given their concentrations of people and economic activity, and are responsible for over half of global greenhouse gas emissions. Their challenge, particularly in the developing world, is to fuse technology and markets to become much more efficient in using available resources.” Climate Actions and Economic Significance of Cities Source: Carbon Disclosure Project (CDP); data in overview from various sources Thus, global needs for clean water, sanitation and food as well as demand for energy, mobility (transportation) and for an improved standard of living will increase and put tremendous strain on existing natural resources.

The growing awareness of environmental problems – especially that without a timely, coordinated, and ‘corrective’ intervention by governments the problem of climate change will eventually become irreversible – in addition to the perception of natural resources’ finite supply brings any debate back to the fundamental question of how to sustain life on earth. What is Sustainable Development about?  The first association that comes to mind has to do with energy needs in general – and the finite fossil fuel supply amid projected future demand growth – and carbon-emissions-free energy in particular.

Renewable energy sources (solar, wind, hydro) have the potential to pick up the slack and supply a larger percentage of projected future energy demand globally. In this context, technological innovation represents one suitable solution to problems related to sustainability. However, a different angle to tackle these problems is a change in human behavior based on better information and awareness leading to energy savings by implementing simple energy efficiency measures. This point emphasizes the importance of public awareness and/or education, which can serve as a catalyst for action – i.e. a change of course. Apart from concerns about energy, the concept of sustainability includes all aspects of political, economic, and social life in so far as present actions may constrict future actions.

The so-called UN ‘Brundtland Report’ from 1987 is very instructive on this topic and defines sustainable development as follows: “Humanity has the ability to make development sustainable to ensure that it meets the needs of the present without compromising the ability of future generations to meet their own needs. The concept of sustainable development does imply limits – not absolute limits but limitations imposed by the present state of technology and social organization on environmental resources and by the ability of the biosphere to absorb the effects of human activities. But technology and social organization can be both managed and improved to make way for a new era of economic growth. […]

To date, many companies have realized the merits of modifying their products and processes to become more sustainable. (…) But, these [incremental] innovations will only get us so far. What we need are not just better products and processes, but fundamentally different business models. We need companies and industries whose underlying structures are, at worst, zero negative impact, and at best, contributing to the regeneration and restoration of natural, human and social capital.” The US utility industry will have no other choice than taking steps along the path towards more ‘value creation from sustainability’ in order to remain a viable business model for future generations.”<

See on Scoop.itGreen & Sustainable News

Life Cycle Cost Analysis – Making a Case for Green Building and Efficiency Retrofits

Steven Forrester’s small Colorado engineering firm is four years old. While he started DMA Engineering during tough economic times, he is holding his own because of clients like the city of Louisville, where his firm recently designed a solar thermal lap pool for a city recreation center.

Source: blog.rmi.org

>"“When we present a design, 99% of the time, we do LCCA, “ says Forrester. “It shows we bring added value.”

In the case of the solar-heated pool, the facilities manager had to go to City Council members for approval. The LCCA demonstrated the financial incentive to do the project. Forrester uses LCCA mainly to compare different types of systems over the lifetime of the building. The price of new equipment is an easily comprehensible but incomplete cost. LCCA also accounts for future costs. LCCA adds in maintenance, energy use, tax incentives or rebates, and any salvage value. It also can cover replacement costs. For example, really good windows may last 50 or more years, so it’s not likely building owners would account for their replacement. Rooftop units, on the other hand, which are usually considered an inexpensive heating and cooling solution for commercial buildings, must be replaced much more frequently. “We typically see replacement 10-25 years,” says Forrester.

That means if design teams are thinking about the lifetime of the building, then the cost of one rooftop unit is really the cost of three, six, or nine units or more, explains Rocky Mountain Institute Analyst Roy Torbert. RMI recommends LCCA as standard practice on all new and retrofit building projects.

“Most equipment will be around for 20 years. Without doing the lifecycle analysis, you only know the initial costs rather than the full cost over the life of the building,” says Forrester. “I think it’s an invaluable part of making any decision about any piece of equipment.”

While Forrester compares the direct economic costs of alternative design solutions, some people and organizations are beginning to consider the indirect, more complex societal costs.

[…] RMI is helping GSA to use life cycle assessment to account for the environmental impact of building retrofits and operation, and will then convert the impact into a dollar value.

Life cycle assessment, or LCA, estimates the environment impact of processes and products in terms of greenhouse gas emissions, wastes, toxins, and particulate matter. GSA will wrap the hidden costs associated with this impact into the LCCA in order to provide a fuller analysis.

Design teams can use LCCA to show the tradeoffs between cost and another factor that is important to the client, such as carbon. Since President Obama has ordered all new federal buildings to be net zero by 2030, many energy service companies working on federal projects will be closely examining these kinds of tradeoffs. "<

See on Scoop.itGreen Building Design – Architecture & Engineering

Development of small scale renewable landfill bio-gas electric generator in UK

ACP funds for development of small scale landfill gas engine in UK Energy Business Review ACP’s biogas partner AlphaGen Renewables, which oversee the installation and operation of a 50kW microgeneration landfill gas engine, will develop the project.

Source: biofuelsandbiomass.energy-business-review.com

>”The project is expected to generate power from the landfill gas resource at the site under a 20 year agreement with Norfolk County Council.

AlphaGen Renewables chairman Richard Tipping said: “We are delighted to be partnering with ACP on this project, which is set to deliver strong returns. Renewables such as biogas are playing a growing role in the UK’s energy production.”

Albion Ventures Renewables head David Gudgin said: “Biogas is an increasingly popular area of renewable energy and we are looking forward to working with AlphaGen both on this project and others in the future.”<

See on Scoop.itGreen Energy Technologies & Development

Liquid Air Proposed as Clean Fuel Replacement for Diesel Vehicles

Liquid air could potentially be a source of clean vehicle power for commercial trucks in the UK by 2020, according to a report by the Liquid Air Energy Network.   Source: www.environmentalleader.com >”The report projects that a liquid-air powered British fleet of 36,000 vehicles by 2025 could save more than 1 billion liters of diesel fuel, 1.4 million metric tons of carbon dioxide equivalent (well-to-wheel), and a net of £113 million ($193 million) in investment costs. […] Although liquid air is not currently in mass production, liquid nitrogen, which has similar properties, could easily be used as a temporary substitute for early liquid air vehicles while waiting for production of liquid air to ramp up to projected demand levels. Although several engine concepts in this area are being developed, report authors decided to focus on the two closest to commercial deployment: the zero-emissions “power and cooling” engine for truck and trailer refrigeration, and the diesel-liquid air “heat hybrid” engine for buses, delivery trucks and other commercial vehicles. The Dearman Engine Company is developing both applications, and its refrigeration engine begins on-vehicle testing this year and is scheduled for commercial production in 2016. According to the report, liquid air is now being recognized as a potentially powerful new energy source, and the concept has received approximately £20 million ($34 million) in government grants, including £9 million ($15.4 million) to develop liquid air energy storage for storing grid electricity, £6 million ($10 million) for a new Centre for Cryogenic Energy Storage at Birmingham University and £5 million ($8.5 million) to develop liquid air vehicle engines.”<   See on Scoop.itGreen Energy Technologies & Development

Province Calls for Renewable Energy Storage Systems Demonstration Projects

Most of the new systems will be able to turn on a dime, storing and releasing energy almost instantaneously to help balance out the supply and demand over the course of a day

Source: www.theglobeandmail.com

>”Ontario has embarked on a quest to find the holy grail of renewable energy – an effective means to store the power generated by intermittent wind and solar installations.

The province’s Independent Electricity System Operator (IESO) recently chose five companies who will build a dozen demonstration projects designed to capture and release energy. That would allow the electricity grid to react to fluctuations in power production, which are becoming more significant with the addition of renewables whose output varies depending on how the wind blows and sun shines.

[…]

The technologies that will be tested include advanced batteries, systems that store power in the form of hydrogen, and even flywheels that hold energy as kinetic energy in a spinning rotor.

Bruce Campbell, president of the IESO, called storage facilities a “game changer” for a grid that was designed to produce electricity at exactly the same time it is consumed. “Energy storage projects will provide more flexibility and offer more options to manage the system efficiently,” he said.

The test projects will be distributed at various locations around the province, and will be connected to different parts of the grid to see how effectively they can help balance supply, demand and other transmission issues.

Among the suppliers are Hydrogenics Corp., which will test a hydrogen storage system, and Hecate Energy and Canadian Solar Solutions Inc., which will use various battery technologies. Convergent Energy and Power LLC will test a flywheel that converts electricity to kinetic energy stored in a rotor. Dimplex North America Ltd. will install thermal systems in apartments in Hamilton, Ont., that store electricity as heat in special bricks, releasing it later when the building needs to be warmed.

Rob Harvey, director of energy storage at Hydrogenics, said his company’s test system will incorporate an advanced electrolysis system that uses electricity to split water into hydrogen and oxygen. That hydrogen can then be used in a fuel cell to generate electricity when needed. Coupling the fuel cell and the electrolyser means power can be effectively stored for any length of time and dispatched as needed.

If the tests are successful, Mr. Harvey said, this could be a significant new line of business for Hydrogenics, which now makes hydrogen-producing systems for industrial customers, as well as fuel cells, which are essentially engines that use hydrogen as fuel.”<

 

See on Scoop.itGreen Energy Technologies & Development

Maintaining High Performance HVAC Control Systems for Cost Savings in Building Operations

The performance level of a building is directly related to the performance level of its control systems. You cannot manage a high performance building without high performing control systems.

 

Source: www.automatedbuildings.com

>”We rely on control systems to monitor and manage our building systems. For the most part it’s been assumed that once the control system is installed and configured it will work for years with little attention and minimal maintenance. Some systems may be trouble-free, but the majority of them will need regular attention and maintenance. Over time hardware will fail, software parameters and versions change and slowly the control system will “drift” from its original configuration and performance.

The role of control systems is somewhat undervalued. When you examine the most complex system in most buildings, the HVAC infrastructure, you find that it’s the HVAC control system, not the HVAC equipment, which produces the most operational issues and is the leading cause of inefficient energy use. Lawrence Berkley National Laboratories examined 60 buildings and found the highest frequency of common problems with HVAC was in the control system. Texas A&M research determined that of the operational and maintenance measures that could produce significant energy savings, 77% of the savings were from correcting control problems.

Maintaining a high performing control system involves regular maintenance, software and data management and organizational policies. The issues that can cause problems with a building control system are the same challenges all of us have had at one time or another with our computer or smartphone: problems related to software, hardware, communications networking and “user” mistakes. What follows is an overview of some of the typical control system issues and recommendations as to how to keep it performing at a high level.”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning