Utility To Replace N-Gas Peaker Plants With Energy Storage

Duane M. Tilden, P.Eng                          November 10, 2018

The main caveat of Energy Efficiency is to do more with less. Energy Efficiency is low-lying fruit, easy to harvest. For utilities and the grid there are many advancements coming that will allow us to enable a more resilient and sustainable electrical transmission system connecting providers, consumers, and prosumers.

Electricity Prosumers & Renewable Energy

“Active energy consumers, often called ‘prosumers’ because they both consume and produce electricity, could dramatically change the electricity system. Various types of prosumers exist: residential prosumers who produce electricity at home – mainly through solar photovoltaic panels on their rooftops, citizen-led energy cooperatives or housing associations, commercial prosumers whose main business activity is not electricity production, and public institutions like schools or hospitals. The rise in the number of prosumers has been facilitated by the fall in the cost of renewable energy technologies, especially solar panels, which in some Member States produce electricity at a cost that is the same or lower than retail prices.” (1)

What is a Peaker Plant?

Peaking power plants, also known as peaker plants, and occasionally just “peakers”, are power plants that generally run only when there is a high demand, known as peak demand, for electricity.[1][2] Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants, which supply a dependable and consistent amount of electricity, to meet the minimum demand.” (2)

As more renewable energy projects are added to provided base load power, in an absence of electricity when renewable sources of electricity are inactive a greater reliance is put on peaker plants to make up energy shortfall . However, as improvements in energy storage solutions gain traction through capacity and competitive costing it is now possible to replace fossil fuel powered peaker plants with energy storage.

Public Utilities Commission of the State of California (CPUC)

In a recent decision the State of California has proceeded with plans to develop and procure electrical storage solutions for the Public Utility as an alternative to aging natural gas peaker plants. A net reduction in carbon emissions by eliminating fossil fuel consumption.

Energy Storage California 2018

Table 1 – Summary of Pacific Gas and Electric’s (PG&E’s) energy storage power purchase
agreements (PPAs)

“Approval of PG&E’s landmark energy storage solicitation is the most significant example to date of batteries taking the place of fossil fuel generation on the power grid.

Energy storage has helped decrease the California’s reliance on gas for years, particularly since 2016, when regulators ordered accelerated battery procurements to counteract the closure of a natural gas storage facility outside Los Angeles.

The PG&E projects, however, are the first time a utility and its regulators have sought to directly replace multiple major power plants with battery storage.

The projects would take the place of three plants owned by generator Calpine — the 580 MW Metcalf plant and the Feather River and Yuba City generators, both 48 MW.

​Calpine and the California ISO last year asked the Federal Energy Regulatory Commission to approve reliability-must-run (RMR) contracts for the plants, arguing they are essential to maintain power reliability. The one-year contracts would see California ratepayers finance the continued operation of the generators, which are losing money in the ISO’s wholesale market.

FERC approved the request in April, but California regulators were already planning for when the plants retire. In January, they ordered PG&E to seek alternatives to the generators, writing that the lack of competition in RMR contracts could mean higher prices for customers. ” (4)

 

References:

  1. European Parliament Think Tank – Electricity Prosumers
  2. Peaking_power_plant
  3. Resolution E-4949. Pacific Gas and Electric request approval of four energy storage facilities with the following counterparties: mNOC, Dynegy, Hummingbird Energy Storage, LLC, and Tesla.
  4. Storage to replace California Peaker Plants
Advertisements

Zip Code 00000

Quote

via The 50 Year Underground Coal Mine Fire

“In this part of Pennsylvania, a mine town gone bust is hardly news. But there is none whose demise has been so spectacular and observable. Centralia has been on fire, literally, for the past four decades.

The Centralia mine fire began in 1962 when a pile of burning trash ignited an exposed seam of coal. The fire soon seeped down into the lattice of old mine tunnels beneath town. When it was founded in 1866, Centralia’s ocean of underground coal, aptly named the Mammoth Vein, meant limitless wealth. But once the fire began, it came to mean endless destruction.

This abandoned section of Route 61 runs smack through one of Centralia’s so-called hot zones. In these areas the underground fire directly affects the surface landscape. The traffic that used to flow over this section of road has been permanently detoured several hundred yards to the east. Thanks to a recent snowfall, the tracks of other visitors are obvious — that is until the snow cover abruptly ends. It’s as if someone has drawn a line across the road. On one side there’s snow. On the opposite side there’s bone-dry asphalt. The road’s surface is not exactly warm. But the asphalt is definitely not as cold as it should be on a chilly day in the Appalachian Mountains. In the roadside woods, all the trees are dead, baked to death by the subterranean smolder. Even their bark has peeled away.

Further in, a crack 50 feet in length has ripped through the highway. Puffs of white gas steadily float out. I step to the edge of the crack. It’s about two feet wide and two feet deep, filled with garbage and chunks of broken pavement. Then the wind shifts slightly, and a gas cloud bends in my direction. I cover my nose and mouth with the collar of my jacket. Standing on the roof of this inferno has suddenly lost its appeal. I turn and walk back to my car.”

http://wapo.st/1eMhdGq

Related image

Supercritical Carbon Dioxide – A Plan to Eliminate 25% of Existing Power Plants

Duane M. Tilden, P.Eng                           October 26, 2018

Is it possible that we can drastically reduce the existing fleet of power plants by 25% or more? Yes, this does seem to be a rather extravagant claim considering how many power providers or utilities such an increase in energy efficiency in output will impact.  Examining the United States as our example:

As of December 31, 2017, there were about 8,652 power plants in the United States that have operational generators with a combined nameplate electricity generation capacity of at least 1 megawatt (MW). A power plant may have one or more generators, and some generators may use more than one type of fuel. (1)

So, reducing the existing fleet by 25% would enable us to decommission approximately 2,163 of these plants.  This plan would require the examination of the total supply chain to optimize these reductions whilst maintaining the integrity of the existing distribution network. A significant project having enormous impact on the economy and meeting carbon reduction strategies on a global scale.

Supercritical Carbon Dioxide (SCCD) Turbines

In previous posts I have discussed the technology of SCCD turbines for power production and how this system can be used for a wide variety of power production and energy extraction methods. A recent article published by Euan Mearns with commentary delves even deeper into this technology to discuss the global impacts of increased power production efficiency on reducing carbon emissions.

GHG’s, carbon, NOx, pollution, waste heat, entropy effects, and consumption of resources are all commensurately reduced when we systematically increase power production energy efficiency at the plant level. An improvement of energy efficiency at the system level has a profound impact in output capacity or input reduction. For example, if we can increase the efficiency by 10% from 30% to 40% in conversion, the output of the plant is improved by 4/3 or 33% or inversely, the input requirement will reduce by 3/4 or 25%.

Power Plant Energy Efficiency

To measure the energy efficiency of a thermo-electric power plant we use the heat rate. Depending on the quality of the fuel and the systems installed we convert heat energy into electrical energy using steam generators or boilers. We convert water into steam to drive turbines which are coupled to generators which convert mechanical motion into electricity.

Examination of data provided will be simplified using statistical averages. In 2017 the average heat rates and conversion efficiencies for thermal-electric power plants in the US (2) are given as follows:

  • Coal: 10465 Btu/Kw – 32.6%
  • Petroleum: 10834 Btu/Kw – 31.5%
  • Natural Gas: 7812 Btu/Kw – 43.7%
  • Nuclear: 10459 Btu/Kw – 32.6%

Examination of the US EIA data for 2017 shows us that currently Natural gas is 11.1% more efficient than Coal in producing electricity while consuming 25.4% less fuel for the same energy output.

So we already have proof that at a plant level, energy efficiency gains in consumption are leveraged by smaller improvements in the thermodynamic cycle. For natural gas power plants the current state of the art is to use a combined cycle combustion process which is not employed in other thermo-electric power plants.

HOW A COMBINED-CYCLE POWER PLANT PRODUCES ELECTRICITY (3)

This is how a combined-cycle plant works to produce electricity and captures waste heat from the gas turbine to increase efficiency and electrical output.

  1. Gas turbine burns fuel.

    • The gas turbine compresses air and mixes it with fuel that is heated to a very high temperature. The hot air-fuel mixture moves through the gas turbine blades, making them spin.
    • The fast-spinning turbine drives a generator that converts a portion of the spinning energy into electricity.
  2. Heat recovery system captures exhaust.

    • A Heat Recovery Steam Generator (HRSG) captures exhaust heat from the gas turbine that would otherwise escape through the exhaust stack.
    • The HRSG creates steam from the gas turbine exhaust heat and delivers it to the steam turbine.
  3. Steam turbine delivers additional electricity.

    • The steam turbine sends its energy to the generator drive shaft, where it is converted into additional electricity.

Image result for combined cycle power plant

Figure 1. Schematic of Combined Cycle Gas/Steam Turbine Power Plant with Heat Recovery (4)

Comparing Combined Cycle Gas Turbines with SCCD Turbines

The study of thermodynamic cycles is generally a domain studied and designed by engineers and physicists who employ advanced math and physics skills. The turbine is based on the Brayton cycle, while steam turbines operate on the Rankine cycle. The Rankine cycle uses a working fluid such as water, which undergoes a phase change from water to steam. The Brayton cycle is based on a single phase working fluid, in this case combusted natural gas.

Both SCCD turbines and Gas Turbines operate on the Brayton cycle, however, they use different working fluids and requirements based on operating conditions. The gas fired turbine takes in air which is compressed by the inlet section of the turbine and natural gas is combined with the compressed air and ignited. The hot expanding gasses turn the turbine converting heat to mechanical energy. A jet engine operates on the Brayton cycle.

For a combined cycle gas turbine some of the waste heat is recovered by a heat exchange system in the flue stack, converted to steam to drive  a second turbine to produce more electricity and increase the overall energy efficiency of the system.

In the case of an SCCD the turbines working fluid is maintained in a closed loop, continually being heated through a heat exchanger from a source and run in piping through the turbine and a compressor. Secondary heat exchangers for recuperation and cooling may be employed. These are all emerging technologies undergoing serious R&D by the US DOE in partnership with industry and others.

Closed Loop SCO2 Recompression Brayton Cycle Flow Diagram

Figure 2. Closed Loop SCO2 Recompression Brayton Cycle Flow Diagram (NETL)

 

Technology Development for Supercritical Carbon Dioxide (SCO2) Based Power Cycles

The Advanced Turbines Program at NETL will conduct R&D for directly and indirectly heated supercritical carbon dioxide (CO2) based power cycles for fossil fuel applications. The focus will be on components for indirectly heated fossil fuel power cycles with turbine inlet temperature in the range of 1300 – 1400 ºF (700 – 760 ºC) and oxy-fuel combustion for directly heated supercritical CO2 based power cycles.

The supercritical carbon dioxide power cycle operates in a manner similar to other turbine cycles, but it uses CO2 as the working fluid in the turbomachinery. The cycle is operated above the critical point of CO2so that it does not change phases (from liquid to gas), but rather undergoes drastic density changes over small ranges of temperature and pressure. This allows a large amount of energy to be extracted at high temperature from equipment that is relatively small in size. SCO2 turbines will have a nominal gas path diameter an order of magnitude smaller than utility scale combustion turbines or steam turbines.

The cycle envisioned for the first fossil-based indirectly heated application is a non-condensing closed-loop Brayton cycle with heat addition and rejection on either side of the expander, like that in Figure 1. In this cycle, the CO2 is heated indirectly from a heat source through a heat exchanger, not unlike the way steam would be heated in a conventional boiler. Energy is extracted from the CO2 as it is expanded in the turbine. Remaining heat is extracted in one or more highly efficient heat recuperators to preheat the CO2 going back to the main heat source. These recuperators help increase the overall efficiency of the cycle by limiting heat rejection from the cycle. (4)

Commentary and Conclusion

We already are on the way to developing new systems that offer significant improvements to existing. Advancements in materials and technology, as well as other drivers including climate concerns and democratizing the energy supply. Every percentage of increase in performance reduces the consumption of fossil fuels, depletion of natural resources, generated waste products and potential impacts on climate.

SCCD systems offer a retrofit solution into existing power plants where these systems can be installed to replace existing steam turbines to reach energy efficiency levels of Combined Cycle Gas Turbines. This is a remarkable development in technology which can be enabled globally, in a very short time frame.

References:

  1. USEIA: How many power plants are there in the United States?
  2. USEIA: Average Operating Heat Rate for Selected Energy Sources
  3. GE: combined-cycle-power-plant-how-it-works
  4. https://www.netl.doe.gov/research/coal/energy-systems/turbines/supercritical-co2-turbomachinery

 

Oldest Nuclear Power Plant in US to be Retired – The 60 Year Decommissioning Process

When a nuclear plant retires, it stops producing electricity and enters into the decommissioning phase. Decommissioning involves removing and safely storing spent nuclear fuel, decontaminating the plant to reduce residual radioactivity, dismantling plant structures, removing contaminated materials to disposal facilities, and then releasing the property for other uses once the NRC has determined the site is safe.

According to Exelon, Oyster Creek will undergo a six-step decommissioning process. The typical decommissioning period for a nuclear power plant is about 60 years, so parts of the Oyster Creek plant structure could remain in place until 2075. (1.)

retired nuclear power plants and nuclear power plants that have announced retirement

Since 2013, six commercial nuclear reactors in the United States have shut down, and an additional eight reactors have announced plans to retire by 2025. The retirement process for nuclear power plants involves disposing of nuclear waste and decontaminating equipment and facilities to reduce residual radioactivity, making it much more expensive and time consuming than retiring other power plants. As of 2017, a total of 10 commercial nuclear reactors in the United States have been successfully decommissioned, and another 20 U.S. nuclear reactors are currently in different stages of the decommissioning process.

To fully decommission a power plant, the facility must be deconstructed and the site returned to greenfield status (meaning the site is safe for reuse for purposes such as housing, farming, or industrial use). Nuclear reactor operators must safely dispose of any onsite nuclear waste and remove or contain any radioactive material, including nuclear fuel as well as irradiated equipment and buildings. (2.)

References:

  1. America’s oldest operating nuclear power plant to retire on Monday
  2. Decommissioning nuclear reactors is a long-term and costly process

Energy Efficiency of Power Production: How Supercritical Carbon Dioxide Turbines Operate

Duane M. Tilden, P.Eng.                                    Sept 1, 2018

Foreword:

This is another article in an ongoing series of reports on the technological development of supercritical carbon dioxide in the power production and energy efficiency sectors of industry, power plants and utilities.

dodge-sco23 supercritical CO2 turbine

Figure 1. Size comparison of Supercritical Power Turbine to Conventional Steam Turbine (1)

Abstract:

The ever increasing search for improving energy and power production efficiency is a natural quest as developments in technology seek to be utilized to improve operations and supply cost effectively. The technologies behind the utilization of supercritical carbon dioxide and other such fluids have long been established. We are furthering our exploration into this sector of power production developing new technologies along the way to a smarter economy and modernization of infrastructure.

The Principle of Operation

Supercritical fluids can play an important role in developing better electricity generators because of their liquid- and gas-like properties. A supercritical fluid is an optimal working fluid because it has a temperature and pressure above its critical point, meaning that it doesn’t have a definite liquid or gas phase. Consequently, the slightest changes in pressure or temperature cause huge changes in the material’s density.

With any supercritical fluid, the ease of compressibility goes up, explains Stapp, so it becomes something more like water. Because supercritical CO2 also compresses more easily than steam, the amount of work done during the compression phase—normally accounting for 25 percent of the work performed inside the system—is dramatically reduced; the energy saved there greatly contributes to the turbine’s overall efficiency.

“We expand it like a gas, and pressurize it like a liquid,” says James Pasch, principle investigator of the Supercritical Carbon Dioxide Brayton Cycle Research and Development Program. “You can do this with any fluid, but supercritical carbon dioxide matches really well with ambient temperatures.”

Carbon dioxide is optimal for this application because it doesn’t go through a phase change at any point during the cycle. Its critical temperature, 88 degrees Fahrenheit, is very close to ambient temperature, which means the heat emitted by the turbine is the same temperature as the surrounding environment. Supercritical carbon dioxide is also very dense; at its critical point, the fluid is about half the density of water. So, in addition to being easier to compress, less work is required to cycle it back to the heat source for re-expansion.

The Brayton Cycle also offers direct environmental benefits. For one, it’s carbon neutral. The system takes carbon dioxide out of the air and puts it in the recompression cycle loop. Just as important is the fact that the system limits water usage by minimizing discharge, evaporation, and withdraw.

“That’s a big deal for the southwest,” says Gary Rochau, manager of Sandia’s Advanced Nuclear Concepts Department. Sandia’s generator can work in places where water is in limited supply. This puts it on par with the Palo Verde Nuclear Power Generating Station, a nuclear power plant in Arizona that uses recycled waste water as cooling water, saving groundwater and municipal water supplies for other uses. (2)

Figure 1. Illustration of a Supercritical CO2 Turbine [Peregrine Turbine Technologies] (2)

Advances in Materials and Technology

GE Reports first wrote about Hofer last year when he 3D printed a plastic prototype of the turbine. His team, partnered with Southwest Research Institute and Gas Technology Institute, has since submitted the design to the U.S. Department of Energy and won an $80 million award to build the 10 MW turbine. The turbine features a rotor that is 4.5 feet long, 7 inches in diameter, and only weighs 150 pounds. The engineers are now completing a scaled-down, 1 MW version of the machine and will test it in July at the Southwest Research Institute.

The idea of using CO2 to power a steam turbine has been around for a while. It first appeared in the late 1960s, and an MIT doctoral student resurrected it in 2004. “The industry has been really interested in the potential benefits of using CO2 in place of steam in advanced supercritical power plants,” Hofer says.

By “supercritical” Hofer means efficient power stations using CO2 squeezed and heated so much that it becomes a supercritical fluid, which behaves like a gas and a liquid at the same time. The world’s most efficient thermal power plant, RDK 8 in Germany, uses an “ultrasupercritical” steam turbine operating at 600 degrees Celsius and pressure of 4,000 pounds per square inch, more than what’s exerted when a bullet strikes a solid object.

Hofer says that the steam power plant technology “has been on a continuous march” to increase efficiency and steam temperature, but once it tops 700 degrees Celsius, “the CO2 cycle becomes more efficient than the steam cycle.” Hofer’s turbine and casing are made from a nickel-based superalloy because it can handle temperatures as high as 715 degrees Celsius and pressures approaching 3,600 pounds per square inch. “You need a high-strength material for a design like this,” he says.

 Figure 2. GE Global Research engineer Doug Hofer is building a compact and highly efficient turbine that fits on a conference table but can generate 10 megawatts (MW), enough to power 10,000 U.S. homes. The turbine, made from a nickel-based superalloy that can handle temperatures up to 715 degrees Celsius and pressures approaching 3,600 pounds per square inch, replaces steam with ultrahot and superpressurized carbon dioxide, allowing for a smaller design.

The hellish heat and pressure turn CO2 into a hot, dense liquid, allowing Hofer to shrink the turbine’s size and potentially increase its efficiency a few percentage points above where state-of-the-art steam systems operate today. “The pressure and fluid density at the exit of our turbine is two orders of magnitude higher than in a steam turbine,” Hofer says. “Therefore, to push the same mass through, you can have a much smaller turbine because the flow at the exit end is much denser.”

Hofer’s design uses a small amount of CO2 in a closed loop. “It’s important to remember that this is not a CO2 capture or sequestration technology,” he says. Hofer says that the technology, which is being developed as part of GE’s Ecomagination program, could one day start replacing steam turbines. “It’s on the multigenerational roadmap for steam-powered systems,” he says.

By virtue of becoming more efficient, the technology could help power-plant operators reduce greenhouse gas emissions. “The efficiency of converting coal into electricity matters: more efficient power plants use less fuel and emit less climate-damaging carbon dioxide,” wrote the authors of the International Energy Agency report on measuring coal plant performance. (3)

Previous Blog Posts on Supercritical Carbon Dioxide:

  1. https://duanetilden.com/2016/11/11/transitioning-oil-gas-wells-to-renewable-geothermal-energy/
  2. https://duanetilden.com/2016/03/13/supercritical-co2-used-for-solar-battery-power-system/
  3. https://duanetilden.com/2015/04/23/doe-invests-in-super-critical-carbon-dioxide-turbine-research-to-replace-steam-for-electric-power-generators/
  4. https://duanetilden.com/2013/10/29/supercritical-co2-refines-cogeneration-for-industry/
  5. https://duanetilden.com/2013/10/29/supercritical-co2-turbine-for-power-production-waste-heat-energy-recovery/
  6. https://duanetilden.com/2013/10/29/waste-heat-recovery-using-supercritical-co2-turbines-to-create-electrical-power/

 

References:

  1. supercritical-carbon-dioxide-power-cycles-starting-to-hit-the-market/
  2. supercritical-carbon-dioxide-can-make-electric-turbines-greener
  3. ecomagination-ge-building-co2-powered-turbine-generates-10-megawatts-fits-table/

Study Finds BC Pension Fund Manager is Funding Climate Agreement Breach

A study* released by the Corporate Mapping Project (CMP), a watchdog organization indicates that public pensions could be overly invested in the fossil fuel industry. This is a concern as international agreements signed by Canada are directed to reducing emissions, while public money is invested in an agenda that requires growth and production in a sector which is in decline.

Image result for kinder morgan pipeline

Figure 1. Map of proposed expansion current pipeline and tanker route – Kinder Morgan / Trans Mountain Pipeline. (1)

 

Image result for kinder morgan pipeline

Figure 2. Map of impact of refinery facilities and proximity to conservation areas, a University, a Salmon spawning inlet, residential housing and major transport routes. (1)

 

The area that will be impacted by the growth of the facility are diverse and vulnerable. This is not a brownfield development, and in fact is on the side of a mountain and part of a larger watershed. Serious consideration should be given to relocating the facility or decommissioning.

There are alternate locations better suited for this type of high hazard industrial facility, away from sensitive areas and remote from populations and high traffic harbours. Why are these alternatives not being discussed?

Here’s a snippet taken from the introduction of the report and their findings. How can we stop carbon emissions when local investing strategies are in the opposite direction? Are public pension funds safely invested and competently managed? Likely not.

 

CMP researchers Zoë Yunker, Jessica Dempsey and James Rowe chose to look into BCI’s investment practices because it controls one of the province’s largest pools of wealth ($135.5 billion) — the pensions of over half-a-million British Columbians. Which means BCI’s decisions have a significant impact on capital markets and on our broader society.

Their research asked, “Is BCI is investing funds in ways that effectively respond to the climate change crisis?”

Unfortunately, the answer is “No.” BCI has invested billions of dollars in companies with large oil, gas and coal reserves — companies whose financial worth depends on overshooting their carbon budget — and is even increasing many investments in these companies.

As another recent CMP study clearly shows what’s at stake. Canada’s Energy Outlook, authored by veteran earth scientist David Hughes, reveals that the projected expansion of oil and gas production will make it all but impossible for Canada to meet our emissions-reduction targets. The study also shows that returns to the public from oil and gas production have gone down significantly. (2)

 

*This study is part of the Corporate Mapping Project (CMP), a research and public engagement initiative investigating the power of the fossil fuel industry. The CMP is jointly led by the University of Victoria, Canadian Centre for Policy Alternatives and the Parkland Institute. This research was supported by the Social Science and Humanities Research Council of Canada (SSHRC).

References:

  1. kinder_morgan_pipeline_route_maps
  2. fossil-fuelled-pensions

Banning the Internal Combustion Engine: Is this the end of Fossil Fuels?

As a general rule I find that most North Americans are unaware that there is a growing movement of countries that are banning new sales of vehicles powered by gasoline or diesel and may also include other fuels such as propane, compressed and LNG (liquid natural gas).

The local news is rife with plans to grow our exploitation of natural resources and build more pipelines for anticipated expansion to new markets such as China. The federal government is in the process of colluding with the petroleum industry to force the construction of a dil-bit pipeline in a densely populated region of Greater Vancouver.  Meanwhile our future markets are vanishing as other governments are phasing out fossil fuels and their engines.

Image #1: A rendering of the Silent Utility Rover Universal Superstructure (SURUS) platform with truck chassis. 

SURUS was designed to form a foundation for a family of commercial vehicle solutions that leverages a single propulsion system integrated into a common chassis. (1)

Fuel cell technology is a key piece of GM’s zero-emission strategy.

General Motors’ Silent Utility Rover Universal Superstructure (SURUS) is an electric vehicle platform with autonomous capabilities powered by a flexible fuel cell. GM displayed it at the fall meeting of the Association of the United States Army, as the commercially designed platform could be adapted for military use.

SURUS leverages GM’s newest Hydrotec fuel cell system, autonomous capability and truck chassis components to deliver high-performance, zero-emission propulsion to minimize logistical burdens and reduce human exposure to harm. Benefits include quiet and odor-free operation, off-road mobility, field configuration, instantaneous high torque, exportable power generation, water generation and quick refueling times. (1)

 

Table 1. List of Countries Banning the ICE & Timeline (2)
Wikipedia Table of Countries Banning the Internal Combustion Engine.png

At an automotive conference in Tianjin, China revealed it was developing plans towards banning fossil fuel-based cars. Though China has not set a 2040 goal like the U.K. and France, it said it was working with other regulators on a time-specific ban.

“The ministry has also started relevant research and will make such a timeline with relevant departments. Those measures will certainly bring profound changes for our car industry’s development,” Xin Guobin, the vice minister of industry and information technology, said.

Both India and Norway have also said they have electric car targets set for the next few decades. India, home to heavily polluted cities, said by 2030 it plans to have vehicles solely powered by electricity. (3)

Final Remarks:

I explain this worldwide movement to the electric vehicle and the impact this will have oil markets, however, most of whom I discuss this issue with are unaware of these vital facts. In addition we are seeing growing alternate forms of power sources for our electrical grid, such as solar, wind, tidal, hydro-electric, geothermal and others.

If you ran a business that called for a major investments in capital for infrastructure, would you make it knowing that your market is non-existent? Maybe it’s time for Canadians and Americans to wake up and smell the coffee.

References:

  1. fuel-cell-electric-truck-platform
  2. List_of_countries_banning_fossil_fuel_vehicles
  3. how-internal-combustion-engine-bans-could-catalyze-big-oil-concerns

Solar and Energy Storage Set New Lows For Electricity Price in 2017

The year started with a solar-plus-storage record: AES inked a contract for a Kauai project at 11 cents per kilowatt-hour. The facility will combine 28 megawatts of solar photovoltaic capacity with 20 megawatts of five-hour duration batteries, producing 11 percent of the island’s electricity.

That project managed to outsize an earlier Tesla/SolarCity deal on the island and shave a few cents off the unit price. In May, another project made this one look like an appetizer.

Tucson Electric Power contracted with NextEra Energy Resources to build out a major solar-plus storage project at a 20-year PPA rate below 4.5 cents per kilowatt-hour. The facility will pair 100 megawatts of solar generation with a 30 megawatt/ 120 megawatt-hour storage system. (That’s as big as the AES Escondido system, which was the largest of its kind until Tesla outdid it in Australia).

That announcement turned heads and set of a flurry of number crunching, as analysts and rivals tried to unpack how such a low price could be possible. The investment tax credit plays a role, as does NextEra’s ability to source equipment at aggressive price points.

Crucially, this is happening in sunny Arizona, where the abundance of solar generation is creating value for dispatchable power. Storage thrives when its flexibility is compensated, and Arizona’s regulated utilities can do just that.

Full Story at: top-10-energy-storage-stories-of-2017

Hybrid Electric Bus uses Hydrogen as Fuel

“[…] According to Paulo Emilio, this is the most efficient hydrogen bus in the world. “A European company tested a hydrogen bus in ten cities, which consumed 25 kilos of hydrogen for each 100 kilometers; this month, the same company launched an improved version, with 14 kilos of hydrogen consumed for each 100 kilometers” where as “our bus consumes just 5 kilos of hydrogen”, he says. […]”

via Literally, a green bus

Are Cryptocurrencies a Fad or a Revolution in Finance?

Duane M. Tilden, P.Eng
November 5, 2017

As I was walking to my weekly bridge game at the local club, I was pondering my newfound interest in cryptocurrencies, Bitcoin, Ethereum, the block chain, and related topics such as mining, smart contracts, ICO’s; the list goes on. I also thought about the value of things from my childhood, like marbles, hockey and baseball trading cards, comic books, coins, stamps, post cards, and other things that I have collected. All which created markets and gained extrinsic value over time, and could be held speculatively. I then asked myself, “Are cryptocurrencies a passing  fad or here to stay?”

What Makes a Currency Valuable?

Some things, such as coins may be made of a valuable base metal alloy, like gold, silver, nickel and copper. Coins are currency, and as such a perfect example to assessing intrinsic value and extrinsic value. In the past coins were minted with higher contents of the base metal alloys.  The metal content gave them an intrinsic value due to the metals rarity and utility. In time, these metals gained value, to the point where it cost more to mint a coin than it was worth.  People would then begin to horde or “mine” the coin for its intrinsic value which was greater than it’s face value as a currency.

metcalfe_curve

Figure 1. The Metcalfe Curve (1)

Extrinsic value, however, could be likened to what we would consider the “fiat” aspect of a currency. As currencies have moved away from a gold or silver standard, the value of money is largely based on consensus. Markets are also consensus driven, without a universal agreement or set of rules, there could not be trade. This is the reason for the development for money or currency. I work and get paid in the common unit of currency, which I can then use to buy and rent goods and services.

Currency and Security

Until recent developments, Governments and their agencies in partnership with banking institutions have generally controlled currency and financial markets. The operation of the economy is the basis upon which society functions. Money exchanges hands for goods and services, including wages. One currency usually denominates value in a physical market. However, these markets can be subject to various forms of attack or manipulation. Physical money could be counterfeited, transfer of money and assets could be lost or stolen, other forms of fraud could occur where one loses their assets.

Another form of attack is personal, or on the individual. Local regulations and taxation laws require valuation of assets and income which are held by the individual to be known to the public agency and could be subject to economic deprivation and restrictions. This is an instance where individual privacy is violated in built-in, systemic and semi-transparent.

Examples of this are everywhere, such as income tax, sales tax, medical tax, alimony and child-support, retirement and pension plans, insurance. If you owe the government money in a disputed case, they often will violate an individuals rights to deprive them of assets, such as money in bank accounts, garnishee of wages directly from the employer, denial of services, loss of principal residence and other such actions.

Most of the money that we earn, own, or spend is being tracked by the government. There are lots of taxes and lots of “rules” made by the big boys. Unfortunately, the present financial system is often disadvantaging us. Why? Because it often collects more than it provides. (2)

Consensus and Fiat Money

Since a currency in today’s world generally consists of a consensus agreeing in a trading market place, then the truth is anything can have value. As the internet has opened up trading across international borders, and companies have sprung up in the financial market place to provide services beyond their physical location, often catering to the world. I can purchase electronics from China and have them delivered to Canada on eBay, using PayPal or a credit card to exchange in their accepted currency. Buy and sell ads have sprung up, such as Craigslist and Kijiji , allowing wider ranging access to markets at a greatly reduced costs as compared to paper advertising in magazines.

Computer users over time had an edge over non-users, as information became available in a vast manner over greater areas. Shopping for the best price of a desired item, good or service can be searched for on my laptop and obtained at a fair cost. No longer does one have to go out and purchase a paper magazine or ad book, in their search. We now can now open a browser on our computer, or digital device, ask a question on a search engine and sort through a selection of answers. Phone numbers, addresses, reviews, prices, hours of operation, names of staff, job openings and more information is all available quickly and efficiently.

Enter the Bitcoin, blockchains and crypto-currencies. In one report recently obtained, sourced from the international Engineering Firm ARUP (2) it has been stated about Bitcoin, a technology introduced by Satoshi Nakomoto.

At the start of 2009,when the world was in the middle of a major financial crisis, a paradigm shift in technology quietly made its debut. That technology is called Bitcoin, and it’s the biggest innovation in finance in 500 years, and certainly the greatest invention of the 21st century so far. (3)

Cryptocurrencies Create Markets

Beyond creating an anonymous system of financial transactions and storage, crypto-currencies are creating new markets of value and trade. There has been a recent wave of new crypto-currencies coming on the market, most of which have issued whitepapers, and have sales landing pages which outline the details about structure, their markets or business plan, how to participate, and their projected timeline.

In my opinion, issuing tokens for sale is very similar to crowd-funding, which may also be likened to buying or selling shares on the stock market, without the restrictions or regulations necessarily placed on participants. Whether or not these activities are legal may depend on local jurisdictions. However, as long as no laws are broken for the purposes of making transactions in a business manner, or the proposed ecosystem,  then personal privacy of participants and security should be secured to all qualified participants, which are traits of a crypto-currency like the original Bitcoin.

The tokens offered in the pre-ICO sales are generally intended to fund the business operations, which, if all goes well, will turn a profit and be able to provide token based services. Details of the venture and how proceeds from projected profits are to be distributed are usually outlined in the white paper. Tokens may be able to be openly traded as a currency, depending on various applicable rules and regulations which may apply and being able to be listed on the various exchanges.

For example a current energy token on the market, PowerLedger.io (4) –  is a blockchain-based peer-to-peer energy trading platform enabling consumers and businesses to sell their surplus solar power to their neighbours without a middleman.

<From a Media Press Release>  Power Ledger is based in Perth and uses blockchain technology to allow households to trade excess solar power over the electricity network.

Major Australian power retailer Origin Energy recently announced a three-month trial with Power Ledger to explore the benefits and challenges of peer-to-peer energy trading across a regulated network.

“Blockchain technology and cryptocurrency underpins our business offering and we are excited to be working with Perth-based DigitalX” said Power Ledger Chair Dr Jemma Green.

POWR tokens will be offered via the Ethereum cryptocurrency network in an uncapped price offer, meaning the tokens’ final price will be determined by the market demand.

“POWR will be the Ethereum blockchain protocol token required throughout the Power Ledger eco-system that can be converted to ‘Sparkz’, which is the crypto-currency we have set up for users to trade electricity using the platform,” said Dr Green.

As part of the engagement,DigitalX will introduce cryptocurrency investors to Power Ledger in exchange for a fee which consists of a mix of Ether (ETH) and POWR tokens.

“Blockchain-enabled innovation is disrupting traditional industries and digital currency is changing the way companies access capital. DigitalX is pleased to be able to facilitate this quantum shift in traditional mechanisms for accessing funding,” said Mr Travers.  (5)

Generally speaking, however, most crypto-currencies will have many advantages over fiat currency or stock markets. For one, their trade is not restricted to one market, or country to operate. Beyond anonymity one can store value in one token, exchange it for another, buy services on a network, or hold it speculatively. There are the other aspects related to smart contracts and the block-chain where physical assets or other attributes, such as counting operations of a machine or device can be linked to a token. In fact the possibilities seem endless, only bounded by the limits of imagination.

Cryptocurrency Offerings and Exchanges

Every day I receive more notifications regarding new offerings on a multiple of news feeds. Many of these offerings look good and viable. There are many new white-papers to read, and some are quite technically advanced and detailed in outlook and projections. As more cryptocurrencies are introduced into markets and traded on platforms investments will be expected to continue.

As cryptocurrencies are rapidly gaining acceptance and appeal, the task of evaluating all emerging offerings would be odious without methods of categorization, comparison and establishing legitimacy. At this time, according to the coinmarketcap.com, there are 1257 Cryptocurrencies with a total market cap of $199 Billion USD currently listed on exchanges. Currently there are 121 active exchanges trading cryptocurrencies (5) and in the last 24 hours there was a “volume of 614,489 BTC and $4,396,051,516 on 5915 trading pairs” (6).

Other resources of current token or coin offerings and other related information can be found on various websites, including tokenmarket.net and coinranking.com.

The Future of Cryptocurrency

At the current pace of innovation, new offerings, and investment as determined by market capitalization, it does not appear that current rapid growth in cryptocurrencies  slow down. Rather, examining current trends in cryptocurrency and comparing to models, it appears that we are in the innovation and early adoption phases of a technological innovation, as seen in figure 2. (7)

TechAdoptCurve2

Figure 2. Technological Adoption Curve (7)

In addition to the known bell curve of adoption, the value of the networks being formed on the internet, obeys Metcalfe’s law, see figure 1.

Metcalfe’s law states that the value of a telecommunications network is proportional to the square of the number of connected users of the system (n2).

As we can surmise from the effect of Metcalfe’s law as it applies to the development of cryptocurrencies is that we are currently in the earlier phases of value development, which will be expected to grow at an exponential rate associated with a nodal peer to peer model.

220px-Metcalfe-Network-Effect.svg

Two telephones can make only one connection, five can make 10 connections, and twelve can make 66 connections.

For innovators and early adopters these are exciting times as the number of participants continue to grow, and more capital continues to be invested in fledgling commercial enterprises. New business plans for ICO and Token issues are being issued every day. There are technical developments coming, apps, games, lenders and financial instruments, as well as new types of Tokens being issued with a variety of proof’s or calculation methods. Blockchains technology is changing to become increasingly efficient to handle ever increasing numbers of transactions. At this time there appears to be no limit to the possible applications of blockchain technology.

combined_curve

Figure 3. Combined Curve – Crossing the Chasm (1)

[…] The combination of Moore’s and Metcalfe’s laws explains the rise of information technology and the growth of the Internet as we know it today. […] And finally, in an unprecedented apotheosis, by combining the three preceding charts and by ― I have to admit ― visually cheating with axes, scales, and representations I came to the observation that the chasm is actually the point where the transition from a technology driven business to a value driven business needs to take place ― and if this doesn’t happen, that any new product or technology introduction is doomed to fail.

Disclaimers:

Expect that there are traps and pitfalls, some ventures may be fraudulent or simply fail. No guarantees on individual outcomes of ICO’s or other value propositions, and, as in all markets expect that there will be both successes and failures.

Expect, in various regions, government control and regulation, which may attempt to prevent or limit participation by populations or otherwise affect and manipulate markets.

Every participant in any new market, such as a cryptocurrency,  is advised to perform their own due diligence and research before investing capital.

No guarantees or warrantees are implied or expressed by the author, who, may at any time, hold vested interests in a variety of cryptocurrency tokens for speculation or other purposes.

End

References

  1. The Metcalfe Curve
  2. 7 Trends in Cryptocurrency Entrepreneurs Should Know
  3. Blockchain-Technology (for the Built Environment)
  4. How PowerLedger Works -Snapshot
  5. PowerLedger.io Home Page
  6. cryptocoincharts.info
  7. The Early Days of Cryptocurrency