Solar Energy and Battery Storage Coupled Provide Demand Response & Utility Peak Shaving

Borrego Solar, a developer, and Stem, an energy storage firm, discuss when PV, storage or both will benefit commercial customers the most.

Sourced through Scoop.it from: www.greentechmedia.com

>” […] Thanks to advancements in technology, there are more energy solutions available to consumers. As a result, the confusion about which option to choose — solar, storage or solar-plus-storage — is growing.

Utility energy costs

To understand the benefits of energy storage and solar at a customer facility, it’s essential to first understand the elements of most organizations’ utility energy costs: energy charges and demand charges. This is the bread and butter for energy managers, but many leaders in finance and/or operations aren’t as aware of the energy cost mix — despite it being one of their largest budgetary line items. It should be noted that this billing structure isn’t in place in every market.

Energy charges, the price paid for the amount of energy used over the course of the billing cycle, are how most people think of paying for electricity. A price is paid for every kilowatt-hour used. Demand charges are additional charges incurred by most commercial customers and are determined by the highest amount of energy, in kilowatts, used at any instant or over some designated timeframe — typically a 15-minute interval — in that billing cycle.

Demand charges are a bit more complex. They come from a need for the grid infrastructure to be large enough to accommodate the highest amount of energy, or demand, needed at any moment in order to avoid a blackout. Every region is different, but demand charges typically make up somewhere between 20 percent and 40 percent of an electricity bill for commercial customers.

Why storage?

Intelligent storage can help organizations specifically tackle their demand charges. By combining predictive software and battery-based storage, these systems know when to deploy energy during usage peaks and offset those costly demand charges. Most storage systems run completely independently from solar, so they can be added to a building whether or not solar is present.

Storage can reduce demand charges by dispensing power during brief periods of high demand, which in essence shaves down the peaks, or spikes, in energy usage. Deploying storage is economical under current market conditions for load profiles that have brief spikes in demand, because a relatively small battery can eliminate the short-lived peaks.

For peak demand periods of longer duration, a larger, and considerably more expensive, battery would be needed, and with the higher material costs, the economics may not be cost-effective. As system costs continue to decline, however, a broader range of load profiles will be able to save with energy storage.

Why solar?

For the commercial, industrial or institutional energy user, solar’s value proposition is pretty simple. For most facilities in states with high energy costs and a net metering regime in place, onsite solar can reduce energy charges and provide a hedge against rising electricity costs. The savings come primarily from producing/buying energy from the solar system, which reduces the amount of energy purchased from the utility, and — when the installation produces more than is used — the credit from selling the excess energy to the grid at retail rates.

The demand savings are a relatively small part of the benefit of solar because the timing of solar production and peak demand need to line up in order to cut down demand charges. Solar production is greatest from 9 a.m. to 3 p.m., but the peak period (when demand for energy across the grid is highest) is typically from 12 p.m. to 6 p.m. If demand-charge rates are determined by the highest peak incurred, customers with solar will still fall into higher demand classes from their energy usage later in the day, when solar has less of an impact.

That being said, solar can reduce a significant portion of demand charges if the customer is located within a utility area where solar grants access to new, solar-friendly rate schedules. These rate schedules typically reduce demand charges and increase energy charges, so the portion of the utility bill that solar can impact is larger.  […]”<

See on Scoop.itGreen Energy Technologies & Development

Japan Installs World’s Largest Offshore Wind Turbine at Fukushima

offshore wind turbine was anchored by the Fukushima Offshore Wind Consortium and is located approximately 12 miles off the cost of Fukushima, a region of Ja

Sourced through Scoop.it from: www.hydrogenfuelnews.com

>” The turbine has been built to withstand 65-foot waves.

The 344-foot 7 MW (megawatt) Offshore Hydraulic Drive Turbine features a rotor diameter of 538 feet and three giant blades, each stretching 262 feet in length. The structure is fastened to the seabed by four 20-ton anchors, and loose chains connect the turbine to the seabed, fortifying it against large waves.

One of the chief engineers of the turbine, Katsunobu Shimizu, told NBC News that “These turbines and anchors are designed to withstand 65-foot waves.” He also explained that “here we can get 32-foot-tall tsunamis. That’s why the chains are deliberately slackened.”

The consortium purposely designed the structures to be able to withstand the fierce and unforgiving weather native to Japan’s waters. In fact, this problematic weather even caused issues during the construction of the turbine. Installations had to be reportedly put on hold on four separate occasions because of typhoons.

The offshore wind turbine is one of three planed for the area.

The Fukushima Offshore Wind Consortium is led by Marubeni Corporation and also involves nine other firms, such as Mitsubishi Heavy Industries, which was the company that supplied the turbine. The $401 million project is funded by Japan’s Ministry of Economy, and was created for the purpose of developing and testing the wind technology for additional commercialization, and to bring new industry to the Fukushima region of Japan that was devastated by the earthquake in 2011.

The 7 MW offshore wind turbine is one of three turbines planned for the facility. When the final turbine is installed later this year, the three turbines are expected to generate a combined total of 14 MW. […]”<

See on Scoop.itGreen Energy Technologies & Development

EPA Proposes to Cut Methane Emissions from New and Existing Landfills

Methane is a potent greenhouse gas with a global warming potential more than 25 times that of carbon dioxide. Climate change threatens the health and welfare of current and future generations. Children, older adults, people with heart or lung disease and people living in poverty may be most at risk from the health impacts of climate change. In addition to methane, landfills also emit other pollutants, including the air toxics benzene, toluene, ethylbenzene and vinyl chloride.

Image Source:  http://www.environmentalleader.com/

Sourced through Scoop.it from: yosemite.epa.gov

>”Release Date: 08/14/2015
Contact Information: Enesta Jones jones.enesta@epa.gov 202-564-7873 202-564-4355

WASHINGTON – As part of the President’s Climate Action Plan – Strategy to Reduce Methane Emissions, the U.S. Environmental Protection Agency (EPA) issued two proposals to further reduce emissions of methane-rich gas from municipal solid waste (MSW) landfills. Under today’s proposals, new, modified and existing landfills would begin collecting and controlling landfill gas at emission levels nearly a third lower than current requirements.  […]

Municipal solid waste landfills receive non-hazardous wastes from homes, businesses and institutions. As landfill waste decomposes, it produces a number of air toxics, carbon dioxide, and methane. MSW landfills are the third-largest source of human-related methane emissions in the U.S., accounting for 18 percent of methane emissions in 2013 – the equivalent of approximately 100 million metric tons of carbon dioxide pollution.

Combined, the proposed rules are expected to reduce methane emissions by an estimated 487,000 tons a year beginning in 2025 – equivalent to reducing 12.2 million metric tons of carbon dioxide, or the carbon pollution emissions from more than 1.1 million homes. EPA estimates the climate benefits of the combined proposals at nearly $750 million in 2025 or nearly $14 for every dollar spent to comply. Combined costs of the proposed rules are estimated at $55 million in 2025.

Today’s proposals would strengthen a previously proposed rule for new landfills that was issued in 2014, and would update the agency’s 1996 emission guidelines for existing landfills. The proposals are based on additional data and analysis, and public comments received on a proposal and Advance Notice of Proposed Rulemaking EPA issued in 2014.

EPA will take comment on the proposed rules for 60 days after they are published in the Federal Register. The agency will hold a public hearing if one is requested within five days of publication.  “<

See on Scoop.itGreen & Sustainable News

New EPA Emissions Rules To Cut GHG Methane Emissions By 40 Percent in Oil and Gas Sector

WASHINGTON (Reuters) – The U.S. Environmental Protection Agency will propose regulations on Tuesday aimed at cutting methane emissions from the oil and gas sector by 40 to 45 percent over the next decade

Sourced through Scoop.it from: www.huffingtonpost.com

>”WASHINGTON (Reuters) – The U.S. Environmental Protection Agency will propose regulations on Tuesday aimed at cutting methane emissions from the oil and gas sector by 40 to 45 percent over the next decade from 2012 levels, a source familiar with the issue said on Monday.

The regulations on methane are one part of the Obama administration’s strategy to curb greenhouse gases and combat climate change.

The targets in Tuesday’s proposal are in line with a January announcement by the Obama administration that it wanted to reduce oil and gas industry methane emissions by up to 45 percent from 2012 levels by 2025, the source said.

Earlier this month, President Barack Obama unveiled the final version of his plan to tackle greenhouse gases from coal-fired power plants, requiring carbon emissions from the sector be cut 32 percent from 2005 levels by 2030.

(Reporting By Valerie Volcovici; Writing by Mohammad Zargham; Editing by Peter Cooney)”<

See on Scoop.itGreen & Sustainable News

Increasing Heat Island Effect’s Influence on Urban Temperature Records Introduces Bias in Climate Studies

When it comes to human-caused climate change, urban warming is a big player.

Sourced through Scoop.it from: www.cato.org

>”Perhaps no other climatic variable receives more attention in the debate over CO2-induced global warming than temperature. Its forecast change over time in response to rising atmospheric CO2 concentrations is the typical measure by which climate models are compared. It is also the standard by which the climate model projections tend to be judged; right or wrong, the correctness of global warming theory is most often adjudicated by comparing model projections of temperature against real-world measurements. And in such comparisons, it is critical to have a proper baseline of good data; but that is easier acknowledged than accomplished, as multiple problems and potential inaccuracies have been identified in even the best of temperature data sets.

One particular issue in this regard is the urban heat island effect, a phenomenon by which urban structures artificially warm background air temperatures above what they normally would be in a non-urbanized environment. The urban influence on a given station’s temperature record can be quite profound. In large cities, for example, urban-induced heating can be as great as Tokyo’s 10°C, making it all the more difficult to detect and discern a CO2-induced global warming signal in the temperature record, especially since the putative warming of non-urbanized areas of the planet over the past century is believed to be less than 1°C.  Yet, because nearly all long-term temperature records have been obtained from sensors initially located in towns and cities that have experienced significant growth over the past century, it is extremely important that urbanization-induced warming – which can be a full order of magnitude greater than the background trend being sought – be removed from the original temperature records when attempting to accurately assess the true warming (or cooling!) of the natural non-urban environment. A new study by Founda et al. (2015) suggests this may not be so simple or straightforward a task.

Working with temperature records in and around the metropolitan area of Athens, Greece, Founda et al. set out to examine the interdecadal variability of the urban heat island (UHI) effect, since “few studies focus on the temporal variability of UHI intensity over long periods.” Yet, as they note, “knowledge of the temporal variability and trends of UHI intensity is very important in climate change studies, since [the] urban effect has an additive effect on long term air temperature trends.”

[…]

Such findings as these are of significant relevance in climate change studies, for they clearly indicate the UHI influence on a temperature record is not static. It changes over time and is likely inducing an ever-increasing warming bias on the temperature record, a bias that will only increase as the world’s population continues to urbanize in the years and decades ahead. Consequently, unless researchers routinely identify and remove this growing UHI influence from the various temperature data bases used in global change studies, there will likely be a progressive overestimation of the influence of the radiative effects of rising CO2 on the temperature record. “<

See on Scoop.itGreen & Sustainable News

96 Million ‘Shade Balls’ Installed to Cover L.A.’s Reservoirs

A California woman, for one, who wants to ease the drought, put disabled vets to work, and make some money

Sourced through Scoop.it from: www.bloomberg.com

>” […] The shade balls of Los Angeles are 4 inches in diameter, hollow, polyethylene orbs […] The Los Angeles Department of Water and Power has now dumped 96 million balls into local reservoirs to reduce evaporation and block sunlight from encouraging algae growth and toxic chemical reactions. The balls are coated with a chemical that blocks ultraviolet light and helps the spheres last as long as 25 years. Las Virgenes, north of L.A., now uses shade balls, too. […]

The U.S. Environmental Protection Agency has encouraged the nation’s water managers in recent years to find ways to cover or contain their resources, to prevent sunlight from reacting with chlorine and possibly creating carcinogens, says Ed Osann, a senior policy analyst at the Natural Resources Defense Council. The shade balls shouldn’t pose a pollution problem in themselves, he says, since “everything that comes in contact with drinking water has to be a certified material.” Chase says the balls are designed not to degrade.

The shade balls are a novel way to protect drinking water, and Californians’ latest attempt to adjust to their four-year drought. […]”<

See on Scoop.itGreen & Sustainable News

Japan Set to Restart First Nuclear Reactor Since Industry Shut-Down After Fukushima Disaster

Japan is due to switch on a nuclear reactor for the first time in nearly two years on Tuesday, as Prime Minister Shinzo Abe seeks to reassure a nervous public that tougher standards mean the sector is

Sourced through Scoop.it from: www.reuters.com

>” […] Abe and much of Japanese industry want reactors to be restarted to cut fuel imports, but opinion polls show a majority of the public oppose the move after the nuclear crisis triggered by the earthquake and tsunami in March 2011.

In the worst nuclear disaster since Chernobyl 25 years earlier, the meltdowns at the Fukushima Daiichi plant caused a release of radioactive material and forced 160,000 from their homes, with many never to return.

The crisis transfixed the world as the government and the Fukushima operator, Tokyo Electric Power (Tepco), fumbled their response and took two months to confirm that the reactors had undergone meltdowns.

Kyushu Electric Power said it aimed to restart its No. 1 reactor at its Sendai plant at 0130 GMT on Tuesday (2130 ET on Monday).

The plant on the west coast of Kyushu island is the furthest away of Japan’s reactors from Tokyo, where protesters regularly gather outside Abe’s official residence to oppose atomic energy.

At nearly 1,000 km (600 miles) from the capital, Sendai is closer to Shanghai or Seoul.

A successful restart would mark the culmination of a process whereby reactors had to be relicensed, refitted and vetted under tougher standards that were introduced following the disaster.

While two reactors were allowed to restart for one fuelling cycle in 2012, the whole sector has been shut down since September 2013, forcing Japan to import record amounts of expensive liquefied natural gas.

As well as cutting energy costs, showing it can reboot the industry safely is crucial for Abe’s plans to export nuclear technology, said Malcolm Grimston, a senior research fellow at Imperial College in London.

“Japan also has to rehabilitate itself with the rest of the world’s nuclear industry,” said Grimston.

At the Sendai plant, Kyushu Electric expects to have power supply flowing within a few days if all goes to plan. It aims to start the station’s No. 2 unit in October.

The head of Japan’s atomic watchdog said that the new safety regime meant a repeat of the Fukushima disaster would not happen, but protesters outside the Sendai plant are not convinced.

“You will need to change where you evacuate to depending on the direction of the wind. The current evacuation plan is nonsense,” said Shouhei Nomura, a 79-year-old former worker at a nuclear plant equipment maker, who now opposes atomic energy and is living in a protest camp near the plant.

Of Japan’s 25 reactors at 15 plants for which operators have applied for permission to restart, only five at three plants have been cleared for restart. […]”<

See on Scoop.itGreen & Sustainable News

Virtual Power Plants Aggregate Renewable Energy Battery Storage Systems

Aggregating connected energy storage systems to create ‘virtual power plants’ is likely to become a big part of the next phase of storage, according to the executive director of the US-based Energy Storage Association.

Sourced through Scoop.it from: storage.pv-tech.org

>” […] Part of the beauty is that this kind of storage-based ‘multi-tasking’ could be secondary to the main aims of the storage being installed, such as integrating solar.

“You don’t have to do it every day, but on an infrequent basis you can jump into the marketplace to help make money and subsidise all your projects. And, you can do big things for the grid. You will look like a power plant as far as the grid can tell. You can replace the need for a new peaking plant or something like that. [There are] a lot of great things you can do with distributed storage; the sum of [its] parts is greater than the individual pieces.”

Companies are already trialling the concept in various configurations around the world, analyst Omar Saadeh, senior grid analyst at GTM Research, told PV Tech Storage recently. Saadeh said VPPs are one way utilities could use storage to meet “a higher demand for rapidly deployable grid flexibility”.

One example Saadeh cited was a project called PowerShift Atalantic in Canada, which was “designed to manage and mitigate intermittent power from large-scale wind generation, currently totalling 822MW”.

“Through the multiple flexible curtailment service providers, aggregated loads have the ability to balance wind intermittency by responding to virtual power plant dispatch signals in near-real time, providing the equivalent of a 10-minute spinning reserve ancillary service typically executed by pollution-heavy peaker plants,” Saadeh said.

“Since March 2014, the project included 1,270 customer-connected devices with 18 MW of load flexibility, approximately 90% residential.”

Saadeh said Europe has been especially active on the concept, calling France one of the “leading supporters” of such developments.

“They’ve looked at many promising applications including partial islanding, or microgrids, DER-oriented marketplace development, and renewable balancing services.”

German utility Lichtblick, which claims to generate its power 100% from renewables, is another entity which has already got started on VPPs, which it calls a “swarm” of devices. Its battery system providers in VPP programmes include Tesla Energy and Germany’s Sonnenbatterie. Meanwhile another big Tesla partner, SolarCity, also intends to aggregate storage using the EV maker turned energy industry disruptor’s Powerwall for homes. […]”<

See on Scoop.itGreen Energy Technologies & Development

Transparent Solar Cells Could Turn Office Tower Windows and Mobile Devices Into Power Sources

“It’s a whole new way of thinking about solar energy,” says startup CEO about using transparent solar cells on buildings and electronics.

Sourced through Scoop.it from: news.nationalgeographic.com

>” […] With the help of organic chemistry, transparent solar pioneers have set out to tackle one of solar energy’s greatest frustrations. Although the sun has by far the largest potential of any energy resource available to civilization, our ability to harness that power is limited. Photovoltaic panels mounted on rooftops are at best 20 percent efficient at turning sunlight to electricity.

Research has boosted solar panel efficiency over time. But some scientists argue that to truly take advantage of the sun’s power, we also need to expand the amount of real estate that can be outfitted with solar, by making cells that are nearly or entirely see-through.

“It’s a whole new way of thinking about solar energy, because now you have a lot of potential surface area,” says Miles Barr, chief executive and co-founder of Silicon Valley startup Ubiquitous Energy, a company spun off by researchers at Massachusetts Institute of Technology and  Michigan State University. “You can let your imagination run wild. We see this eventually going virtually everywhere.”

Invisible Spectrum Power

Transparent solar is based on a fact about light that is taught in elementary school: The sun transmits energy in the form of invisible ultraviolet and infrared light, as well as visible light. A solar cell that is engineered only to capture light from the invisible ends of the spectrum will allow all other light to pass through; in other words, it will appear transparent.

Organic chemistry is the secret to creating such material. Using just the simple building blocks of carbon, hydrogen, oxygen, and a few other elements found in all life on Earth, scientists since at least the early 1990s have been working on designing arrays of molecules that are able to transport electrons—in other words, to transmit electric current.  […]

Harvesting only the sun’s invisible rays, however, means sacrificing efficiency. That’s why Kopidakis says his team mainly focuses on creating opaque organic solar cells that also capture visible light, though they have worked on transparent solar with a small private company in Maryland called Solar Window Technologies that hopes to market the idea for buildings.

Ubiquitous Energy’s team believes it has hit on an optimal formulation that builds on U.S. government-supported research published by the MIT scientists in 2011.

“There is generally a direct tradeoff  between transparency and efficiency levels,” says Barr. “With the approach we’re taking, you can still get a significant amount of energy at high transparency levels.”

Barr says that Ubiquitous is on track to achieve efficiency of more than 10 percent—less than silicon, but able to be installed more widely. “There are millions and millions of square meters of glass surfaces around us,” says Barr. […]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Natural Gas Sector Gets Congressional Action on LNG Tax Rate Drop

Liquefied natural gas (LNG) as a transportation fuel option is back on the competitive race track, thanks to a part of the temporary (three-month) highway funding bill passed by the U.S. Senate Thursday, according to natural gas vehicle (NGV) advocates. The House-passed version had a similar provision.

Image Source:  www.freightlinertrucks.com

Sourced through Scoop.it from: www.naturalgasintel.com

>” […] At a Congressional hearing last December, the global energy and procurement director for Atlanta-based UPS called for “removing barriers” to NGVs, adding that if Congress really wanted to accelerate the adoption of LNG use in heavy-duty trucks and more use of U.S.-produced natural gas supplies, it needed to eliminate “disproportionate taxing of LNG compared with diesel fuel.”

Noting that President Obama was expected to sign the latest measure, Newport Beach, CA-based Clean Energy Fuels Corp. said the new leveling provision will effectively lower the tax on LNG by 14.1 cents/gal. Twenty-six state legislatures have already taken similar action, a Clean Energy spokesperson told NGI.

Clean Energy CEO Andrew Littlefair said the use of LNG in heavy-duty trucks, locomotives and large marine vessels has been growing steadily in North America, and “anyone who cares about a cleaner environment and energy independence should be very grateful for what the U.S. Congress has done, making LNG much more competitive.”

Executives with America’s Natural Gas Alliance (ANGA), and the NGVAmerica and American Gas Association (AGA) trade associations echoed Littlefair’s sentiments.

“We applaud Congress for including language to equalize the federal highway excise tax on LNG,” said ANGA CEO Marty Durbin. “This provision has garnered strong bipartisan support over the years, and we are thrilled to see it become law.”

Calling the action a “common-sense change” that will mean greater fuel cost savings, NGVAmerica President Matt Godlewski said the passage of the LNG provision is great news for trucking fleets that are looking for clean-burning fuels. His calculation places the excise tax on LNG at 24.3 cents/DGE, compared to its current 41.3 cents/DGE level, Godlewski said.

“Currently, fleets operating LNG-powered trucks are effectively taxed for their fuel at a rate 70% higher than that of diesel fuel,” he said.

An AGA spokesperson clarified the number to point out that the current federal excise tax on both diesel and LNG is 24.3 cents/gallon, but because LNG does not have the same energy content/gallon of fuel, it takes 1.7 gallons of LNG to equal a gallon of diesel. “Since the excise tax is based on volume (gallons) — not energy content — LNG is taxed at 170% of the rate of diesel on an energy equivalent basis,” he said.

“This provision provides the level playing field that natural gas has needed to reach its full potential as a transportation fuel,” said Kathryn Clay, AGA vice president for policy strategy.

Each of the trade groups has been lobbying Congress for some time to take this corrective action on LNG. Under the new provision, the energy equivalent of a diesel gallon of LNG is defined as having a Btu content of 128,700, which AGA said is equal to 6.06 pounds of LNG.

Separately, the new measure defines the energy equivalent of a gallon of compressed natural gas (CNG) as having a Btu content of 115,400, or 5.66 pounds of CNG. […]”<

See on Scoop.itGreen & Sustainable News