Measuring and Monitoring Energy Efficiency

Defining Energy Efficiency

To begin, let us ask what is energy efficiency, what are it’s components and how is it measured.  To make comparisons we need to gather data using measures relevant to the industry in question, also to the input forms of energy, waste streams and the useful work performed.  In the case of a building we may use meters to measure consumption or utility bills and compare changes in consumption rates over time.

To an engineer, energy efficiency is the ratio of useful work over total energy input.  For example, a room air conditioner’s efficiency is measured by the energy efficiency ratio (EER). The EER is the ratio of the cooling capacity (in British thermal units [Btu] per hour) to the power input (in watts).

On a grander scale we may be looking improvements over an industry or sector, changing fuel types in a utility such as the conversion of a coal plant to the production of power fueled by natural gas to reduce the carbon load on the environment.  Efficiency may be measured by different metrics depending on the result sought and may include the environmental impact of waste streams.

EnergyEfficientEconomy

Figure 1:  Historical Energy Use Graph  (1)

Whatever the exact yearly investment figure, the historical economic impact of efficiency is quite clear. As the graph () shows, efficiency has provided three times more of the economic services than new production since 1970:

The blue line illustrates demand for energy services (the economic activity associated with energy use) since 1970; the solid red line shows energy use; and the green line illustrates the gain in energy efficiency. While demand for energy services has tripled in the last four decades, actual energy consumption has only grown by 40 percent. Meanwhile, the energy intensity of our economy has fallen by half.

The area between the solid red line and the blue line represents the amount of energy we did not need to consume since 1970; the area between the dashed red line and the solid red line indicates how much energy we consumed since 1970.

The chart shows that energy efficiency met nearly three quarters of the demand for services, while energy supply met only one quarter.

“One immediate conclusion from this assessment is that the productivity of our economy may be more directly tied to greater levels of energy efficiency rather than a continued mining and drilling for new energy resources,” wrote Laitner. (1)

As noted in an article by the EIA;  The central question in the measurement of energy efficiency may really be “efficient with respect to what?” (2)  In general terms when discussing energy efficiency improvements we mean to perform more of a function with the same or less energy or material input.

Energy Efficiency Measures

Energy efficiency measures are those improvement opportunities which exist in a system which when taken will achieve the goals of achieving greater performance.  For example refer to Table 1 of Energy Efficiency Measures which can be effectively reduce energy consumption and provide an ROI of 5 or less years when applied to the commercial refrigeration industry.

energy efficient refrigeration4.jpg

Table 1:  Commercial Refrigeration Energy Efficiency Measures (3)


Government Action on Energy Efficiency

Energy efficiency has been put forward as one of the most effective methods in efforts to address the issue of Climate Change.  Recently, on February 19, 2015, President Obama signed Executive Order (EO) 13693.

“Since the Federal Government is the single largest consumer of energy in the Nation, Federal emissions reductions will have broad impacts.  The goals of EO 13693 build on the strong progress made by Federal agencies during the first six years of the Administration under President Obama’s 2009 Executive Order on Federal Leadership on Environmental, Energy and Economic Performance, including reducing Federal GHG emissions by 17 percent — which helped Federal agencies avoid $1.8 billion in cumulative energy costs — and increasing the share of renewable energy consumption to 9 percent.  

With a footprint that includes 360,000 buildings, 650,000 fleet vehicles, and $445 billion spent annually on goods and services, the Federal Government’s actions to reduce pollution, support renewable energy, and operate more efficiently can make a significant impact on national emissions. This EO builds on the Federal Government’s significant progress in reducing emissions to drive further sustainability actions through the next decade. In addition to cutting emissions and increasing the use of renewable energy, the Executive Order outlines a number of additional measures to make the Federal Government’s operations more sustainable, efficient and energy-secure while saving taxpayer dollars. Specifically, the Executive Order directs Federal agencies to:

– Ensure 25 percent of their total energy (electric and thermal) consumption is from clean energy sources by 2025.

– Reduce energy use in Federal buildings by 2.5 percent per year between 2015 and 2025.

– Reduce per-mile GHG emissions from Federal fleets by 30 percent from 2014 levels by 2025, and increase the percentage of zero emission and plug in hybrid vehicles in Federal fleets.

– Reduce water intensity in Federal buildings by 2 percent per year through 2025. ” (4)


Summary

Energy efficiency has gained recognition as a leading method to reduce the emissions of GHG’s seen to be the cause of climate change.  Under scrutiny, we find that there are different measures of efficiency across different industry, fuel types and levels.  For example on a micro-level, the functioning of a system may be improved by including higher efficiency components in it’s design, such as motors and pumps.

However, there are other changes which can improve efficiency.  Adding automated computer controls can improve a system level efficiency.   Utilities may change from coal burning to natural gas fired power plants, or industry may convert to a process to include for co-generation.  Battery storage and other technological improvements may come along to fill in the gap.

Historically Energy Efficiency measures have proven to be gaining ground by employing people with the savings earned when applying measures to reduce consumption.  These savings reverberate through the economy in a meaningful way, by reducing the need for the construction of more power plants as one example as we on an individual level.  We consume less energy, and using higher efficiency electronic equipment, and other energy savings measures at a consumer level, our communities are capable of more growth with existing energy supplies.

jEnergy production and consumption, as well as population growths also arise to other issues related to energy consumption, such as water consumption, water waste, and solid material waste.  Building with sustainable materials which promote healthy living environments is gaining importance as we understand the health impacts of a building’s environment on the health and well-being of the occupants.  Energy efficiency in the modern era, as we see from recent government mandates and sustainability programs, such as LEED’s for one, also includes for reductions in water intensity and incorporation of renewable energy programs as an alternative to increasing demand on existing utilities.

 

 

Related Blog Posts:

References

  1. http://www.greentechmedia.com/articles/read/report-u.s.-energy-efficiency-is-a-bigger-industry-than-energy-supply
  2. http://www.eia.gov/emeu/efficiency/measure_discussion.htm
  3. http://www.nwfpa.org/nwfpa.info/component/content/article/52-refrigeration/284-energy-efficient-refrigeration-systems
  4. https://www.whitehouse.gov/administration/eop/ceq/sustainability
Advertisements

PV Panel Energy Conversion Efficiency Rankings

The purpose of this brief is to investigate into the types of solar panel systems with a look at their theoretical maximum Energy Conversion Efficiency both in research and the top 20 manufactured commercial PV panels. 

PVeff(rev160420)

Figure 1:  Reported timeline of solar cell energy conversion efficiencies since 1976 (National Renewable Energy Laboratory) (1)

Solar panel efficiency refers to the capacity of the panel to convert sunlight into electricity.   “Energy conversion efficiency is measured by dividing the electrical output by the incident light power.” (1)  There is a theoretical limit to the efficiency of a solar cell of “86.8% of the amount of in-coming radiation. When the in-coming radiation comes only from an area of the sky the size of the sun, the efficiency limit drops to 68.7%.”

Figure 1 shows that there has been considerable laboratory research and data available on the various configurations of photo-voltaic solar cells and their energy conversion efficiency from 1976 to date.  One major advantage is that as PV module efficiency increases the amount of material  or area required (system size) to maintain a specific nominal output of electricity will generally decrease.

Of course, not all types of systems and technologies are economically feasible at this time for mainstream production.  The top 20 PV solar cells are listed in Figure 2 below with their accompanying measured energy efficiency.

top-20-most-efficient-solar-panels-chart

Figure 2:  Table of the top 20 most efficient solar panels on the North American Market (2)

Why Monocrystalline Si Panels are more Efficient:

Current technology has the most efficient solar PV modules composed of monocrystalline silicon.  Lower efficiency panels are composed of polycrystalline silicon and are generally about 13 to 16% efficient.  This lower efficiency is attributed to higher occurrences of defects in the crystal lattice which affects movement of electrons.  These defects can be imperfections and impurities, as well as a result of the number of grain boundaries present in the lattice.  A monocrystal by definition has only grain boundaries at the edge of the lattice.  However a polycrystalline PV module is full of grain boundaries which present additional discontinuities in the crystalline lattice; impeding electron flow thus reducing conversion efficiency. (3) (4)

Other Factors that can affect Solar Panel Conversion Efficiency in Installations (5):

Direction and angle of your roof 
Your roof will usually need to be South, East or West facing and angled between 10 and 60 degrees to work at its peak efficiency.

Shade
The less shade the better. Your solar panels will have a lower efficiency if they are in the shade for significant periods during the day.

Temperature
Solar panel systems need to be installed a few inches above the roof in order to allow enough airflow to cool them down.  Cooler northern climates also improve efficiency to partially compensate for lower intensity.

Time of year
Solar panels work well all year round but will produce more energy during summer months when the sun is out for longer.  In the far northern regions the sun can be out during the summer for most of the day, conversely during the winter the sun may only be out for a few hours each day.

Size of system
Typical residential solar panel systems range from 2kW to 4kW. The bigger the system the more power you will be able to produce.  For commercial and larger systems refer to a qualified consultant.

 

References:

  1. https://en.wikipedia.org/wiki/Solar_cell_efficiency
  2. http://sroeco.com/solar/top-20-efficient-solar-panels-on-the-market/
  3. http://energyinformative.org/best-solar-panel-monocrystalline-polycrystalline-thin-film/
  4. http://www.nrel.gov/docs/fy11osti/50650.pdf
  5. http://www.theecoexperts.co.uk/which-solar-panels-are-most-efficient

Energy Efficiency Sector Ranks #1 in Job Growth by DOE

 

UNEP-Green-Economy-employment-energy-550x242

Figure 1:  Projected Job Growth by Sectors – Green Economy Report, 2011 (1)

WASHINGTON – The U.S. Department of Energy today released the agency’s first annual analysis of how changes in America’s energy profile are affecting national employment in multiple energy sectors. By using a combination of existing energy employment data and a new survey of energy sector employers, the inaugural U.S. Energy and Employment Report (USEER) provides a broad view of the national current energy employment landscape.

USEER examines four sectors of the economy — electric power generation and fuels; transmission, wholesale distribution, and storage; energy efficiency; and motor vehicles — which cumulatively account for almost all of the United States’ energy production and distribution system and roughly 70 percent of U.S. energy consumption. By looking at such a wide portion of the energy economy, USEER can provide the public and policy makers with a clearer picture of how changes in energy technology, systems, and usage are affecting the economy and creating or displacing jobs.

Some key findings of the report include:

3.64 million Americans work in traditional energy industries, including production, transmission, distribution, and storage.
Of these, 600,000 employees contribute to the production of low-carbon electricity, including renewable energy, nuclear energy and low emission natural gas.
An additional 1.9 million Americans are employed, in whole or in part, in energy efficiency.
Roughly 30 percent of the 6.8 million employees in the U.S. construction industry work on energy or building energy efficiency projects.

A copy of the full report is available HERE.

The report also found several energy industries with projected increases in new jobs. Responding to the USEER survey of employers, the energy efficiency sector predicted hiring rates of 14 percent in 2016, or almost 260,000 new hires. Projected hiring rates were at 5 percent within the electric power generation and fuels sector, reflecting overall growth despite a loss of employment in 2015 in the oil and natural gas extraction sectors. Transmission, wholesale distribution, and storage firms anticipate 4 percent employment growth in 2016. Solar energy firms predicted 15 percent job growth over the next year.

Yet even as the report found the opportunity for job growth in many energy sectors, over 70 percent of all employers surveyed found it “difficult or very difficult” to hire new employees with needed skills.

“The transformation of our energy system and the growth of energy efficiency technologies are creating opportunities for thousands of new jobs, especially in energy efficiency and solar,” said David Foster, Senior Advisor on Energy and Industrial Policy at the Department of Energy.  “This report gives an important snapshot of energy employment in America, and subsequent reports will provide better information to guide policies and priorities that create new jobs, appropriately train workers, and promote a successful national energy policy.” …” (1)

“…As a rule of thumb, investment in renewable energy and energy efficiency generate about 3 times the amount of jobs that other energy related investments create (gas, oil, coal, nuclear). Average numbers of jobs created per million euro invested (3CSEP):

  • Building retrofits: 17
  • Renewable energy: 15
  • Coal: 7
  • Oil and gas: 5

[…] (2)

poschen_chart2.jpg

Figure 2:  Job Generators Comparison Chart (3)

“[…] While much of the debate on climate change and employment has focused on renewables, another and more significant source of jobs from decarbonization has received much less attention. Substantial efficiency gains are technically feasible and economically viable in industry, housing, transportation, and services. Businesses can make a profit and households can enjoy real savings. And spending the surplus on things other than fossil energy will boost an economy’s employment.

For example, the United States is a diversified economy that imports substantial amounts of equipment for renewables. A recent study carefully considered economy-wide effects of reducing emissions by 40 percent by 2030 through a mix of clean energy and energy efficiency (Pollin and others, 2014). It concluded that $200 billion a year in investment would generate a net gain of about 2.7 million jobs: 4.2 million in environmental goods and service sectors and their supply chains but 1.5 million lost in the shrinking fossil- and energy-intensive sectors. The net gain of 2.7 million jobs would reduce the unemployment rate in the 2030 U.S. labor market by about 1.5 percentage points—for example, from 6.5 percent to 5 percent. The authors consider this a conservative estimate; for example, it does not take into account the 1.2 to 1.8 million jobs likely gained from reinvested savings.

Other studies show similar results. A review of 30 studies covering 15 countries and the European Union as a whole found appreciable actual or potential net gains in employment (Poschen, 2015). Most studies considering emission targets in line with the ambitions announced for a Paris agreement in December find net gains on the order of 0.5 to 2.0 percent of total employment, or 15 million to 60 million additional jobs. In emerging market economies such as Brazil, China, Mauritius, and South Africa, green investment was found to accelerate economic growth and employment generation when compared with business as usual. Several studies suggest that more ambitious climate targets would generate greater gains in employment (for a discussion of particular countries, see Poschen, 2015). […]” (3)

References:

(1)  http://bit.ly/1RsVAdc

(2) http://1.usa.gov/1Tby7lt

(3) http://bit.ly/1RlUaV8

 

Armored Trucks get Natural Gas & Electric Plug-in Hybrid Conversion to Reduce Emissions by 99.9% & Big Fuel Economy

Efficient Drivetrains and American Repower are partnering to convert a fleet of six armored vans to run on compressed natural gas with a plug-in hybrid.

Sourced through Scoop.it from: www.autoblog.com

>”When hauling around massive amounts of money and valuables around Southern California, security is generally a much bigger concern than fuel economy. However, the need for vehicles to become more efficient is hitting every segment, even armored vans. That’s why Efficient Drivetrains Inc. and North American Repower are teaming up to convert six of these 26,000-pound behemoths run on natural gaswith a plug-in hybrid offering additional help. The first one should be hauling riches for Sectran Security around Los Angeles in 2016.

All three companies are already positioning the upcoming conversion as a win-win solution to current issues. The armored vehicles can still do their job of hauling money around the LA area but with a claimed 99.9 percent reduction in emissions from the current diesel engines. Generally, the vans make frequent stops while at work but must stay running for security reasons. This can potentially run afoul of California’s rule not to let diesels idle more than five minutes. With this upcoming version, drivers will be able to go electrically between stops and then will use the natural gas when cruising.

This work combines the strengths of both firms working on these vehicles. North American Repower already specializes in natural gas engine management and conversions, and Efficient Drivetrains is very familiar with the world of plug-ins. The funding for the project includes a $3-million grant from the California Energy Commission, plus the same amount in private funds.”<

[…]

>”Press Release:

North American Repower and Efficient Drivetrains, Inc. to Deliver First PHEV-RNG Armored Truck
Collaboration reduces emissions by 99.9 percent

OCEANSIDE, Calif. & MILPITAS, Calif.–(BUSINESS WIRE)–Two global leaders in developing and manufacturing advanced transportation vehicles have teamed up to manufacture a first-of-its-kind fleet of Class-5 armored vehicles that combine the benefits of Renewable Natural Gas (RNG) and zero emission Plug-In Hybrid Electric Vehicle (PHEV) technology.

“We’re excited to be partnering with EDI on this breakthrough innovation”

North American Repower—California’s leading natural gas engine management and conversion technology company— and Efficient Drivetrains, Inc.—a global leader in developing high-efficiency Plug-in Hybrid Electric Vehicle solution—will convert a fleet of six 26,000 pound, Class-5 medium-duty armored vehicles operated by Sectran Security into PHEV vehicles that run on electricity and renewable natural gas—known as “Zero Emission with Range Extension” vehicles. The collaboration supports the dramatic acceleration in California toward a zero emissions environment. Today, the Sectran Security trucks make frequent stops as part of their highly congested urban routes. At each stop, the engines are kept idling for security purposes, but now risk violating California’s strict diesel idling regulations, which prohibit idling the engine for more than five minutes. With the modernized trucks, Sectran can completely eliminate engine idling by operating in all-electric mode during stop-and-go operations on urban routes and in hybrid-mode during highway operations. When complete, the vehicles possess impressive performance statistics—the demonstration trucks will enable Sectran to reduce annual diesel consumption by 31,000+ gallons, significantly reduce annual fuel costs, and reduce emissions by 99.9 percent. […]”<

See on Scoop.itGreen Energy Technologies & Development

Water Vortex Hydro-Electric Power Plant Designs

In a fairly radical departure from the principles that normally govern hydroelectric power generation, Austrian engineer Franz Zotlöterer has constructed a low-head power plant that makes use of the kinetic energy inherent in an artificially induced vortex. The water’s vortex energy is collected by a slow moving, large-surface water wheel, making the power station transparent to fish – there are no large pressure differences built up, as happens in normal turbines.

Sourced through Scoop.it from: blog.hasslberger.com

>” […] The aspect of the power plant reminds a bit of an upside-down snail – through a large, straight inlet the water enters tangentially into a round basin, forming a powerful vortex, which finds its outlet at the center bottom of the shallow basin. The turbine does not work on pressure differential but on the dynamic force of the vortex. Not only does this power plant produce a useful output of electricity, it also aerates the water in a gentle way. Indeed, the inventor was looking for an efficient way to aerate the water of a small stream as he hit upon this smart idea of a plant that not only gives air to the medium but also takes from it some of the kinetic energy that is always inherent in a stream.

[…] Zotlöterer’s results are quite respectable. The cost of construction for his plant was half that of a conventional hydroelectric installation of similar yield and the environmental impact is positive, instead of negative.

The diameter of the vortex basin is 5 meters.

The head – difference between the two water levels – is 1,6 meters.

The turbine produced 50.000 kWh in its first year of operation.

Construction cost was 57.000 Euro […] “<

See on Scoop.itGreen Energy Technologies & Development

Venture Capital from GE, Autodesk Invest in Smart Building Technology Boom

Sales of smart building technologies almost could triple to $17.4 billion between 2014 and 2019. That’s driving a flood of investment from corporations and venture capitalists alike.

Source: www.greenbiz.com

>” […] As of this week, you can add cloud software company Lucid to the list of energy-efficiency startups — particularly those that monitor building power consumption for lighting and climate-control systems — attracting substantial cash infusions this year.

Among those contributing to the $14.2 million Series B round disclosed by Lucid this week: GE Ventures, Autodesk, Formation 8 and Zetta Venture Partners.

Lucid plans to use the new funds for enhancements to BuildingOS, a cloud service that analyzes data from more than 160 hardware and software building technologies.

“Lucid’s technology is rapidly connecting many disparate building systems together, making the vision of truly connected buildings and real-time management possible,” said Ben Sampson, an associate with GE Ventures.

Its reference accounts include Genentech, along with more than a half-dozen educational institutions such as Cornell University and Stanford University.

Lucid joins a respectable list of companies attracting private capital this year, as businesses and organizations become more comfortable with gathering data from the Internet of Things.

Research firm Mercom Capital Group reports that startups focused on smart grid and energy efficiency raised more than $325 million in the first quarter.

Two deals last quarter that explicitly focused on building management or analytics: Blue Pillar, which scored a $14 million deal after more than 250 deployments; and Enbala Power Networks, which raised $11 million.

All told, the last year has been incredibly active in the sector, reaching $944 million in 2014. Those investments covered more than 111 deals at a time when the broader field of cleantech has suffered a decline in available capital, according to a separate report from Lux Research.

“While cleantech is declining from its peak of 291 deals in 2008, building energy deals have risen steadily since then, growing by 208 percent over the same period,” Lux wrote in its presentation about funding trends.

One of the more notable deals over the past two years was Distech Controls, which raised about $37 million in May 2013. […]

Why so active?

The spike in funding reflects the rather bullish revenue projects for building energy management technologies over the next decade. Depending on how broadly you view the market, projections vary dramatically.

If you focus just on building energy management, revenue is likely to reach around $2.4 billion this year, growing almost fivefold to $10.8 billion by 2024, according to the forecast from Navigant Research.

Players in the space include not only a slew of startups, but also multinational companies such as Siemans and Intel.

“Building energy management systems (BEMS) represent an important evolutionary step in the approach to facilities and operations management,” said Casey Talon, senior analyst, commenting on that projection. “As the market matures, more integrated and sophisticated BEMS solutions are delivering energy efficiency improvements while also enabling comprehensive business intelligence and strategic management.”

Indeed, if you consider smart buildings from a more holistic perspective, the growth potential is much larger — up to $17.4 billion by 2019, compared with $6.3 billion last year, according to IDC Energy Insights. In North America, spending is being driven by large corporate operational efficiency initiatives. “<

See on Scoop.itGreen & Sustainable News

IMF Reports Global Energy Subsidies are Unmanageable, Inefficient and Reinforce Inequality

A new report from the International Monetary Fund (IMF) urged policymakers the world over to reform subsidies for products from coal to gasoline, arguing that this could translate into major gains both for economic growth and the environment.

Image Source:  http://bit.ly/1LO0yQb

Source: www.imf.org

>” […] In a speech at the Peterson Institute for International Economics in Washington D.C., marking the release of the paper, IMF First Deputy Managing Director David Lipton noted that “subsidy reform can lead to a more efficient allocation of resources, which will help spur higher economic growth over the longer term.” Removing energy subsidies can also strengthen incentives for “research and development in energy-saving and alternative technologies,” he said. He also noted that, while intended to benefit consumers, subsidies are often inefficient and “could be replaced with better means of protecting the most vulnerable parts of the population.”

“The paper shows that for some countries the fiscal weight of energy subsidies is growing so large that budget deficits are becoming unmanageable and threaten the stability of the economy,” Mr. Lipton said, adding that IMF research shows that 20 countries maintain pre-tax energy subsidies that exceed 5 percent of GDP. For other emerging and developing countries, he said, the share of the scarce government resources spent on subsidies remains “a stumbling block” to higher growth and fundamentally impairs their future. “Because of low prices, there is little investment in much-needed infrastructure. More is spent on subsidies than on public health and education, undermining the development of human capital.”

Energy subsidies also reinforce inequality because they mostly benefit upper-income groups, which are the biggest consumers of energy. “On average, the richest 20 percent of households in low- and middle-income countries capture 43 percent of fuel subsidies,” said Mr. Lipton.

At the same time, Mr. Lipton warned that an increase in prices which can result from subsidy reform can have a significant impact on the poor and that “mitigating measures to protect them as subsidy reform is implemented” must be an integral part of any successful and equitable reform program.

In addition, Mr. Lipton noted that “subsidies aggravate climate change and worsen local pollution and congestion.” The study finds that eliminating pre-tax subsidies would reduce global CO2 emissions by about 1-2 percent which would, by itself, represent “a significant first step in reducing emissions by delivering about 15-30 percent of the Copenhagen Accord’s goal.” As for advanced economies, he noted that subsidies most often take the form of taxes that are too low to capture the true costs to society of energy use (“tax subsidies”), including pollution and road congestion. “Eliminating energy tax subsidies would deliver even more significant emissions reductions said Mr. Lipton, reducing “CO2 emissions by 4.5 billion tons, a 13 percent reduction.” […]”<

See on Scoop.itGreen & Sustainable News

The Hidden Costs of Fossil Fuel Dependency

It is estimated that 80 to 85 percent of the energy consumed in the U.S. is from fossil fuels. One of the main reasons given for continuing to use this energy source is that it is much less expensive than alternatives. The true cost, however, depends on what you include in the calculation, and there are so many costs not figured in the bills we pay for energy.

Source: www.huffingtonpost.com

>” […] Just last week, on May 19, a pipeline rupture caused over 100,000 gallons to spill into Santa Barbara waters. The channel where the spill occurred is where warm water from the south mixes with cold water from the north, creating one of most bio-diverse habitats in the world, with over 800 species of sea creatures, from crabs and snails to sea lions and otters, and a forest of kelp and other undersea plants; it’s also a place through which 19,000 gray whales migrate this time each year. […]

Hidden Costs of Using Fossil Fuels for Energy

It is estimated that 80 to 85 percent of the energy consumed in the U.S. is from fossil fuels. One of the main reasons given for continuing to use this energy source is that it is much less expensive than alternatives. The true cost, however, depends on what you include in the calculation. According to the Union of Concerned Scientists, there are so many costs not figured in the bills we pay for energy. The following includes just some of them:

  1. Human health problems caused by environmental pollution.
  2. Damage to the food chain from toxins absorbed and passed along.
  3. Damage to miners and energy workers.
  4. Damage to the earth from coal mining and fracking.
  5. Global warming caused by greenhouse gasses.
  6. Acid rain and groundwater pollution.
  7. National security costs from protecting oil sources and from terrorism (some of which is financed by oil revenues).

Additional Costs From Continued Subsidies

That’s not all. In addition to the above costs, each and every U.S. taxpayer has been subsidizing the oil industry since 1916, when the oil depletion allowance was instituted. Government subsidies in the U.S. are estimated to be between $4 billion and $52 billion annually. The worldwide figure is pegged between $775 billion and $1 trillion. Why don’t oil and gas companies and governments around the world divert at least some of these subsidies to invest in alternative clean energy sources? Rather than invest in the depleting and damaging energy sources of the past, isn’t it time to look to the future and stop “kicking the can down the road”?

More Hidden Costs

While some call it an urban legend, others say quite emphatically that the oil industry conspired with the automobile industry and other vested interests to put streetcars out of business so that people would be forced to use automobiles and buses to get from point A to B — selling more automobiles, tires, fuel, insurance, etc. Fact or fiction, many big cities (and especially Los Angeles, where alternatives are sparse) are choking from traffic gridlock. The first study on this subject determined that traffic congestion robbed the U.S. economy of $124 billion in 2013. That’s an annual cost of $1,700 per household. This is expected to waste $2.8 trillion by 2030 if we do not take immediate measures to reverse the situation. For those who are skeptical, visit Los Angeles and try to drive around. Even with Waze, much more time and energy is wasted sitting in traffic than you could ever imagine. A commute that formerly took five to 10 minutes can now take upwards of an hour.

There Is a Solution

The solution to many of the problems related to gridlock, damage to the environment and human health includes the following:

  1. Clean energy and storage. […]
  2. More effective and efficient transportation (clean and safe mass transit […]
  3. Better marketing of, and accounting for, the true cost of the alternatives.
  4. Investment to do it.
  5. Political vision and will to transparently tell the truth and make the investment.

Doing the Right Thing Is Rarely Easy

While what is most worthwhile is rarely easy, it is necessary for the planet and living things that call it home.  […]”<

See on Scoop.itGreen & Sustainable News

DOE Energy Review Report Recommends Grid Modernization and Transmission System Upgrades

The Department of Energy (DOE) recently released its first installment of its Quadrennial Energy Review (QER) – a comprehensive report examining how the United States can modernize energy infrastructure to promote economic competitiveness, energy security, and environmental responsibility. This installment…

Source: switchboard.nrdc.org

>” […]  Electric grid reform is timely due to a confluence of factors. First, our grid infrastructure is old and in dire need of upgrade. We could just patch up the existing system by replacing old poles and wires with new ones and call it a day. But given evolving customer preferences for more control over energy usage and newly available efficiency-enabling technologies, doing that would be like replacing an old rotary phone with a newer one instead of upgrading to a smart phone. Grid reform should also consider the changing environment, as grid reliability is increasingly threatened by severe weather. The continuing shift in the energy generation mix to include the benefits of more roof-top solar and remote wind generation will also require changes to our transmission grid.

QER electric grid modernization findings and recommendations

Here are some QER highlights relevant to FERC and what it can do to support a clean electricity grid. (Our Sustainable FERC Project coalition submitted comments to DOE on some of these items before the QER was finalized.)

The necessary transmission build-out for a low-carbon future is likely consistent with historic investment 

To access wind and solar renewable resources far from populated cities, we need long-distance transmission infrastructure. But how much is enough? The QER studied a variety of clean energy future cases, including scenarios with high penetrations of wind and solar power, a cap on climate-warming carbon dioxide emissions to achieve a 40 percent reduction in 2030, and increased natural gas prices. The scenarios produced a range of new transmission requirements, all consistent with our historic investment in transmission infrastructure. In other words, the needed transmission infrastructure build-out to get to a low-carbon future is reasonable. So it boils down to this: the nation will continue to invest billions of dollars in grid infrastructure updates whether we build for a clean energy future or ignore the potential for it – which will it be? We’d argue for the clean pathway to clean our air and stave off the worst effects of climate change

We can more efficiently use existing infrastructure to avoid unnecessary and costly transmission construction 

Just as the highways clog at rush hour, the electric grid gets congested when customer power demand is at its peak. The QER emphasizes that there are a number of ways to alleviate congestion on transmission wires without building costly new infrastructure. These include managing energy use through energy efficiency (smarter use of energy) and demand response (customer reduction in electricity use during high congestion times in exchange for compensation), locally supplying energy through distributed generation (such as rooftop solar), or using stored energy when the transmission lines are constrained. These alternatives not only reduce new transmission construction requirements, but come with the added bonus of improving electric service reliability and reducing pollution from electricity generation. Indeed, three important DOE-funded planning studies show that scenarios combining high levels of these resources can reduce the expected costs of new transmission investment (see a description of the Eastern Interconnection study here).

We can also avoid costly transmission construction by using existing transmission more efficiently through improved operations. Without getting into the wonky details, this means grid operators can adopt smart network technologies and better network management practices to minimize electricity transmission bottlenecks.

We need to appropriately value and compensate energy efficiency, demand response, energy storage, and other resources providing cleaner, cheaper grid services 

Unlike traditional power plants, energy efficiency, demand response, energy storage and other resources can nimbly respond to unanticipated grid events or meet energy demand without requiring extra transmission capacity at peak times. But these resources often offer more to the grid than they receive in compensation. Accurately valuing the services these resources provide would allow regulators and utilities to incent their participation in grid markets. The QER therefore recommends that DOE help develop frameworks to value and compensate grid services that promote a reliable, affordable, and environmentally sustainable grid. […]”<

See on Scoop.itGreen & Sustainable News

Microsoft Uses Big Data To Manage Buildings and Facilities

MicrosoftCampus

“My initial expectation was that we would see the return on investment in terms of driving down our energy costs, and we have seen that,” says Pittenger, to whom Smith reports. “What wasn’t part of my expectations was the gains we would have in operational efficiencies and our abilities to do repairs and maintenance much, much better and much, much smarter.”

Source: www.facilitiesnet.com

Image:  http://news.microsoft.com/2009/11/23/california-coding-microsoft-campus-in-silicon-valley-turns-10/

>” […] Over those 125 buildings on the main Microsoft campus, there are more than 30,000 building systems components — assets, in Smith’s terms — and more than 2 million points where building systems ranging from HVAC to lighting to power monitoring are connected to sensors. In a 24-hour period, those systems produce half a billion data transactions. Each one is small, but when you’re talking about half a billion of something, all those 1s and 0s add up pretty quickly.

But what’s important is being able to do something with those 1s and 0s, which Microsoft could not do until recently because of the mess of systems involved, says Jim Sinopoli, managing principal, Smart Buildings, who helped set up the software pilot program.

“You have an opportunity, if you’re building a new campus or a new building, to really start with a clean slate,” he says. “But you go in these existing buildings and you generally will come upon some unforeseen obstacles.”

The project turned out to be a relatively easy sell. First, Pittenger’s background is financial, so being able to show a strong ROI was a definite plus for Smith, because his boss understands exactly what that means when it comes time to ask for funding. Second, facilities management at Microsoft benefits from a company culture that considers every department to be a key player.

“(CEO) Steve Ballmer likes to say, ‘There are no support organizations at Microsoft,'” Pittenger says. “Everybody is fundamental to the core mission of the company. And we feel that way.”

After gaining approval, the first step was deciding how those obstacles would be overcome. Smith and his team began by writing out 195 requirements for the new way of operating and what their ultimate tool would be able to do. Then they proceeded to look around for an off-the-shelf solution that would be able to do all those things — and failed to find one. So, they built it.

More specifically, they worked with three vendors in a pilot program, encompassing 2.6 million square feet, to build an “analytics blanket” of fault detection algorithms that is layered on top of the different building management systems and reports back to the operations center. If Building 17 and Building 33 have different building management systems, those systems may not be able to talk to each other or provide data to a single reporting system in the operations center. But they can talk to the analytics blanket, which can take the information from every building and combine it into a single output in the operations center. It’s not a replacement for the BMS; instead, it’s adding on functionality that enhances the benefits of the existing BMS.”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning