Solar and Energy Storage Set New Lows For Electricity Price in 2017

The year started with a solar-plus-storage record: AES inked a contract for a Kauai project at 11 cents per kilowatt-hour. The facility will combine 28 megawatts of solar photovoltaic capacity with 20 megawatts of five-hour duration batteries, producing 11 percent of the island’s electricity.

That project managed to outsize an earlier Tesla/SolarCity deal on the island and shave a few cents off the unit price. In May, another project made this one look like an appetizer.

Tucson Electric Power contracted with NextEra Energy Resources to build out a major solar-plus storage project at a 20-year PPA rate below 4.5 cents per kilowatt-hour. The facility will pair 100 megawatts of solar generation with a 30 megawatt/ 120 megawatt-hour storage system. (That’s as big as the AES Escondido system, which was the largest of its kind until Tesla outdid it in Australia).

That announcement turned heads and set of a flurry of number crunching, as analysts and rivals tried to unpack how such a low price could be possible. The investment tax credit plays a role, as does NextEra’s ability to source equipment at aggressive price points.

Crucially, this is happening in sunny Arizona, where the abundance of solar generation is creating value for dispatchable power. Storage thrives when its flexibility is compensated, and Arizona’s regulated utilities can do just that.

Full Story at: top-10-energy-storage-stories-of-2017


Flow Batteries: Developments in Energy Storage Systems (ESS)

The need for large scale storage solutions come to the forefront as a means to adjust supply to demand on the electrical grid.  Energy storage systems can adjust time of delivery to eliminate the need for peaker plants, allow for the addition of intermittent renewable energy sources such as wind and solar, or allow for large users to reduce facility operating costs by using a storage system to supplement energy supply reducing peak demand, most notably for summer A/C loads in buildings.


Out of engineering research laboratories in materials science and electro-chemistry  are coming new energy storage systems designed for the future to solve these issues meanwhile opening up new enterprises and industry.  The characteristics of an ideal flow battery would include:  a long service life, modularity and scalability, no standby losses, chargeability, low maintenance, and safe.  In addition a flow battery will have to be economic compared to other systems which will need to be determined using LCOE analysis.

Related Articles:





Leading Energy Storage Tech for Renewable Energy


Image Source:  U.S. Energy Information Administration (1)


“It doesn’t always rain when you need water, so we have reservoirs – but we don’t have the same system for electricity,” says Jill Cainey, director of the UK’s Electricity Storage Network.

[…] Big batteries, whose costs are plunging, are leading the way. But a host of other technologies, from existing schemes like splitting water to create hydrogen,compressing air in underground caverns, flywheels and heated gravel pits, to longer term bets like supercapacitors and superconducting magnets, are also jostling for position.

In the UK, the first plant to store electricity by squashing air into a liquid is due to open in March, while the first steps have been taken towards a virtual power station comprised of a network of home batteries.

“We think this will be a breakthrough year,” says John Prendergast at RES, a UK company that has 80MW of lithium-ion battery storage operational across the world and six times more in development, including its first UK project at a solar park near Glastonbury. “All this only works if it reduces costs for consumers and we think it does,” he says.

Energy storage is important for renewable energy not because green power is unpredictable – the sun, wind and tides are far more predictable than the surge that follows the end of a Wimbledon tennis final or the emergency shutdown of a gas-fired power plant. Storage is important because renewable energy is intermittent: strong winds in the early hours do not coincide with the peak demand of evenings. Storage allows electricity to be time-shifted to when it is needed, maximising the benefits of windfarms and solar arrays. (2)





Is Utility-Scale Solar Power the Economic Choice to Residential Solar Power?

Originally published on Solar Love. A new study has concluded that utility-scale solar PV systems across the US are “significantly” more cost effective than rooftop solar PV systems. Sp…

Sourced through from:

“[…] the study, conducted by economists at global consulting firm The Brattle Group, found that utility-scale solar PV systems were more cost effective at achieving the economic and policy benefits of PV solar than rooftop or residential-scale solar was.

The study, Comparative Generation Costs of Utility-Scale and Residential-Scale PV in Xcel Energy Colorado’s Service Area, published Monday, is the first of its kind to study a “solar on solar” comparison.

“Over the last decade, solar energy costs for both rooftop and bulk-power applications have come down dramatically,” said Dr. Peter Fox-Penner, Brattle principal and co-author of the study. “But utility-scale solar will remain substantially less expensive per kWh generated than rooftop PV. In addition, utility-scale PV allows everyone access to solar power. From the standpoint of cost, equity, and environmental benefits, large-scale solar is a crucial resource.”

The study yielded two key findings:

  1. The generation cost of energy from 300 MW of utility-scale PV solar is roughly 50% the cost per kWh of the output from an equivalent 300 MW of 5kW residential-scale systems when deployed on the Xcel Energy Colorado system, and utility-scale solar remains more cost effective in all scenarios considered in the study.
  2. In that same setting, 300 MW of PV solar deployed in a utility-scale configuration also avoids approximately 50% more carbon emissions than an equivalent amount of residential-scale PV solar. […]

The report itself was commissioned by American thin-film photovoltaic manufacturer and utility scale developer First Solar with support from Edison Electric Institute, while Xcel Energy Colorado provided data and technical support. Specifically, the report examined the comparative customer-paid costs of generating power from equal amounts of utility-scale and residential/rooftop-scale solar PV panels in the Xcel Energy Colorado system.

A reference case and five separate scenarios with varying degrees of investment tax credit, PV cost, inflation, and financing parameters were used to yield the report’s results.

The specifics of the study’s findings, which imagined a 2019 Xcel Energy Colorado system, are as follows:

  • utility-scale PV power costs ranged from $66/MWh to $117/MWh (6.6¢/kWh to 11.7¢/kWh) across the five scenarios
  • residential-scale PV power costs were well up, ranging from $123/MWh to $193/MWh (12.3¢/kWh to 19.3¢/kWh) for a typical residential-scale system owned by the customer
  • the costs for leased residential-scale systems were even larger and between $140/MWh and $237/MWh (14.0¢/kWh to 23.7¢/kWh)
  • the generation cost difference between the utility- and residential-scale systems owned by the customer ranged from 6.7¢/kWh to 9.2¢/kWh solar across the scenarios

The authors of the report put these figures into perspective, including the national average for retail all-in residential electric rates in 2014, which were 12.5¢/kWh.  […]”

See on Scoop.itGreen Energy Technologies & Development

Top Ten Most Viewed Articles of 2015

Water Vortex

Photo:  Top Viewed Article of the year on Water Vortex Hydro-Electric Power Plant Designs

This is going to be a fun post to write, as I get to review the statistics for 2015 and pick out the ten most viewed posts on my blog for the year.  I am looking forward to performing this review, as I get to find out what works and what does not.  The idea being to give me a chance to refine my techniques and improve my blog posts.

I am listing them in reverse order as we want to heighten the suspense, leading up to the most viewed article.  Each post will also have the posting date and number of views for comparison.  I know this technique is not perfect as some posts will have a longer opportunity to be seen than those written later in the year.  Such discrepancies will be left to discussed in a future article.

10.  Climate Change, Pole Shift & Solar Weather

Magnetic pole shift

This post discusses Earth’s wandering magnetic poles, the fluctuating field strengths and links to solar weather and climate change.  Some rather eccentric, yet plausible explanations based on historical data that pole shifts are possible and have happened, at unpredictable, largely spaced intervals of hundreds of thousands to millions of years, the average being 450,000 years.

Posted on March 3, 2015 and received 44 views.

9.  Leaked HSBC Files from Swiss Bank lead to Tax Evasion and Money Laundering charges

HSBC Scandal

Headline tells it all.  Large bank caught helping clients evade taxes and launder illegally obtained money through bank accounts.

Posted on February 9, 2015 and received 48 views.

8.  Michigan’s Consumers Energy to retire 9 coal plants by 2016

Michigan Coal Plant

Coal is unclean to burn and becoming costly to do operate due to emissions, resulting in coal fired plant closures, 9 by one Michigan utility.

Posted on February 10, 2015 and received 50 views.

7.  Life-Cycle Cost Analysis (LCCA) | Whole Building Design Guide


This article simply reprises, in part, the LCCA (Life-Cycle Cost Analyisis) procedure used for buildings as originally posted by WBDG.

Posted on February 15, 2015 and received 57 views.

6.  Energy Efficiency Development and Adoption in the United States for 2015

energy efficiency adoption

The article discusses the role of large scale energy efficiency programs as an investment and means to achieve certain goals when viewed as the “cheapest” fuel.  The graphic depicts a hierarchy of waste minimization correlating to cost and energy usage and effects with the environmental resources.

Posted on January 8, 2015 and received 59 views.

5.  Renewable Energy Provides Half of New US Generating Capacity in 2014

Renewable Energy

According to the latest “Energy Infrastructure Update” report from the Federal Energy Regulatory Commission’s (FERC) Office of Energy Projects, renewable energy sources (i.e., biomass, geothermal, hydroelectric, solar, wind) provided nearly half (49.81 percent – 7,663 MW) of new electrical generation brought into service during 2014 while natural gas accounted for 48.65 percent (7,485 MW).

Posted on February 4, 2015 and received 62 views.

4.  Cover-up: Fukushima Nuclear Meltdown a Time Bomb Which Cannot be Defused


Tens of thousands of Fukushima residents remain in temporary housing more than four years after the horrific disaster of March 2011. Some areas on the outskirts of Fukushima have officially reopened to former residents, but many of those former residents are reluctant to return home because of widespread distrust of government claims that it is okay and safe.

Posted on July 22, 2015 and received 65 views.

3.  Apple to Invest $2 Billion in Solar Farm Powered Data Center Renovation in Arizona


The company plans to employ 150 full-time Apple staff at the Mesa, Arizona, facility… In addition to the investment for the data center,  Apple plans to build a solar farm capable of producing 70-megawatts of energy to power the facility.  […] Apple said it expects to start construction in 2016 after GT Advanced Technologies Inc., the company’s sapphire manufacturing partner, clears out of the 1.3 million square foot site.

Posted on February 11, 2015 and received 73 views.

2.  Determining the True Cost (LCOE) of Battery Energy Storage

Energy Storage

With regard to [battery] energy storage systems, many people erroneously think that the only cost they should consider is the initial – that is, the cost of generating electricity per kilowatt-hour. However, they are not aware of another very important factor.  This is the so-called LCOE,  levelized cost of energy (also known as cost of electricity by source), which helps calculate the price of the electricity generated by a specific source.

Posted on January 27, 2015 and received 109 views.

1. Water Vortex Hydro-Electric Power Plant Designs

Water Vortex

Austrian engineer Franz Zotlöterer has constructed a low-head power plant that makes use of the kinetic energy inherent in an artificially induced vortex. The water’s vortex energy is collected by a slow moving, large-surface water wheel, making the power station transparent to fish – there are no large pressure differences built up, as happens in normal turbines.

Posted on June 11, 2015 and received 109 views.


Energy Storage Compared to Conventional Resources Using LCOE Analysis

In its first analysis of the levelized cost of storage, Lazard finds some promising economic trends.

Sourced through from:

“[…] “Although in its formative stages, the energy storage industry appears to be at an inflection point, much like that experienced by the renewable energy industry around the time we created the LCOE study eight years ago,” said George Bilicic, the head of Lazard’s energy and infrastructure group, in a release about the report.

Lazard modeled a bunch of different use cases for storage in front of the meter (replacing peaker plants, grid balancing, and equipment upgrade deferrals) and behind the meter (demand charge reduction, microgrid support, solar integration). It also modeled eight different technologies, ranging from compressed-air energy storage to lithium-ion batteries.

“As a first iteration, Lazard has captured the complexity of valuating storage costs pretty well. Unlike with solar or other generation technologies, storage cost analysis needs to account for not just different technologies, but also location and application, essentially creating a three-dimensional grid,” said Ravi Manghani, GTM Research’s senior storage analyst.

In select cases, assuming best-case capital costs and performance, a handful of storage technologies rival conventional alternatives on an unsubsidized basis in front of the meter. Using lithium-ion batteries for frequency regulation is one example. Deploying pumped hydro to integrate renewables into the transmission system is another.  […]

See on Scoop.itGreen Energy Technologies & Development

Solar Energy and Battery Storage Coupled Provide Demand Response & Utility Peak Shaving

Borrego Solar, a developer, and Stem, an energy storage firm, discuss when PV, storage or both will benefit commercial customers the most.

Sourced through from:

>” […] Thanks to advancements in technology, there are more energy solutions available to consumers. As a result, the confusion about which option to choose — solar, storage or solar-plus-storage — is growing.

Utility energy costs

To understand the benefits of energy storage and solar at a customer facility, it’s essential to first understand the elements of most organizations’ utility energy costs: energy charges and demand charges. This is the bread and butter for energy managers, but many leaders in finance and/or operations aren’t as aware of the energy cost mix — despite it being one of their largest budgetary line items. It should be noted that this billing structure isn’t in place in every market.

Energy charges, the price paid for the amount of energy used over the course of the billing cycle, are how most people think of paying for electricity. A price is paid for every kilowatt-hour used. Demand charges are additional charges incurred by most commercial customers and are determined by the highest amount of energy, in kilowatts, used at any instant or over some designated timeframe — typically a 15-minute interval — in that billing cycle.

Demand charges are a bit more complex. They come from a need for the grid infrastructure to be large enough to accommodate the highest amount of energy, or demand, needed at any moment in order to avoid a blackout. Every region is different, but demand charges typically make up somewhere between 20 percent and 40 percent of an electricity bill for commercial customers.

Why storage?

Intelligent storage can help organizations specifically tackle their demand charges. By combining predictive software and battery-based storage, these systems know when to deploy energy during usage peaks and offset those costly demand charges. Most storage systems run completely independently from solar, so they can be added to a building whether or not solar is present.

Storage can reduce demand charges by dispensing power during brief periods of high demand, which in essence shaves down the peaks, or spikes, in energy usage. Deploying storage is economical under current market conditions for load profiles that have brief spikes in demand, because a relatively small battery can eliminate the short-lived peaks.

For peak demand periods of longer duration, a larger, and considerably more expensive, battery would be needed, and with the higher material costs, the economics may not be cost-effective. As system costs continue to decline, however, a broader range of load profiles will be able to save with energy storage.

Why solar?

For the commercial, industrial or institutional energy user, solar’s value proposition is pretty simple. For most facilities in states with high energy costs and a net metering regime in place, onsite solar can reduce energy charges and provide a hedge against rising electricity costs. The savings come primarily from producing/buying energy from the solar system, which reduces the amount of energy purchased from the utility, and — when the installation produces more than is used — the credit from selling the excess energy to the grid at retail rates.

The demand savings are a relatively small part of the benefit of solar because the timing of solar production and peak demand need to line up in order to cut down demand charges. Solar production is greatest from 9 a.m. to 3 p.m., but the peak period (when demand for energy across the grid is highest) is typically from 12 p.m. to 6 p.m. If demand-charge rates are determined by the highest peak incurred, customers with solar will still fall into higher demand classes from their energy usage later in the day, when solar has less of an impact.

That being said, solar can reduce a significant portion of demand charges if the customer is located within a utility area where solar grants access to new, solar-friendly rate schedules. These rate schedules typically reduce demand charges and increase energy charges, so the portion of the utility bill that solar can impact is larger.  […]”<

See on Scoop.itGreen Energy Technologies & Development

Virtual Power Plants Aggregate Renewable Energy Battery Storage Systems

Aggregating connected energy storage systems to create ‘virtual power plants’ is likely to become a big part of the next phase of storage, according to the executive director of the US-based Energy Storage Association.

Sourced through from:

>” […] Part of the beauty is that this kind of storage-based ‘multi-tasking’ could be secondary to the main aims of the storage being installed, such as integrating solar.

“You don’t have to do it every day, but on an infrequent basis you can jump into the marketplace to help make money and subsidise all your projects. And, you can do big things for the grid. You will look like a power plant as far as the grid can tell. You can replace the need for a new peaking plant or something like that. [There are] a lot of great things you can do with distributed storage; the sum of [its] parts is greater than the individual pieces.”

Companies are already trialling the concept in various configurations around the world, analyst Omar Saadeh, senior grid analyst at GTM Research, told PV Tech Storage recently. Saadeh said VPPs are one way utilities could use storage to meet “a higher demand for rapidly deployable grid flexibility”.

One example Saadeh cited was a project called PowerShift Atalantic in Canada, which was “designed to manage and mitigate intermittent power from large-scale wind generation, currently totalling 822MW”.

“Through the multiple flexible curtailment service providers, aggregated loads have the ability to balance wind intermittency by responding to virtual power plant dispatch signals in near-real time, providing the equivalent of a 10-minute spinning reserve ancillary service typically executed by pollution-heavy peaker plants,” Saadeh said.

“Since March 2014, the project included 1,270 customer-connected devices with 18 MW of load flexibility, approximately 90% residential.”

Saadeh said Europe has been especially active on the concept, calling France one of the “leading supporters” of such developments.

“They’ve looked at many promising applications including partial islanding, or microgrids, DER-oriented marketplace development, and renewable balancing services.”

German utility Lichtblick, which claims to generate its power 100% from renewables, is another entity which has already got started on VPPs, which it calls a “swarm” of devices. Its battery system providers in VPP programmes include Tesla Energy and Germany’s Sonnenbatterie. Meanwhile another big Tesla partner, SolarCity, also intends to aggregate storage using the EV maker turned energy industry disruptor’s Powerwall for homes. […]”<

See on Scoop.itGreen Energy Technologies & Development

Arduino based solar power controller to take home appliances off grid

Where’s the middle ground between having a small solar charger for your gadgets, and having a rooftop solar array capable of powering your entire house? The UNplug might know.


>” […] The UNplug solar controller was invented by Markus Löffler in response to his own power blackout experience, where several days without electricity meant a lot of spoiled food. Löffler, an entrepreneur and software engineer living in Altadena, California, developed the UNplug device to serve as a simple and inexpensive way to begin going solar, because it serves as the brain of a micro-solar system, starting as small as a single solar panel and a small battery bank. […]

During the day, UNplug feeds electricity from the solar panel into the appliances connected to it, and charges the battery bank, and then when the sun goes down, it seamlessly switches over those devices to using grid power. In the event of a blackout, UNplug then powers those same appliances from the battery bank, allowing certain crucial electricity needs to continue to be met during an outage.

The UNplug could allow homes to take at least some of their daily electrical loads off the grid, such as the fridge or other household devices, while also serving as an uninterruptible power supply (UPS) in the event of a power outage. The device doesn’t function all by itself, of course, and requires solar panels, batteries, an inverter, and other accessories, but according to Löffler’s campaign page, a small system could be set up for an additional $570 or so, on top of the cost of the UNplug, so the entire investment could be under $1000. (His shopping list is here.) […]”<

See on Scoop.itGreen Energy Technologies & Development

The Hidden Costs of Fossil Fuel Dependency

It is estimated that 80 to 85 percent of the energy consumed in the U.S. is from fossil fuels. One of the main reasons given for continuing to use this energy source is that it is much less expensive than alternatives. The true cost, however, depends on what you include in the calculation, and there are so many costs not figured in the bills we pay for energy.


>” […] Just last week, on May 19, a pipeline rupture caused over 100,000 gallons to spill into Santa Barbara waters. The channel where the spill occurred is where warm water from the south mixes with cold water from the north, creating one of most bio-diverse habitats in the world, with over 800 species of sea creatures, from crabs and snails to sea lions and otters, and a forest of kelp and other undersea plants; it’s also a place through which 19,000 gray whales migrate this time each year. […]

Hidden Costs of Using Fossil Fuels for Energy

It is estimated that 80 to 85 percent of the energy consumed in the U.S. is from fossil fuels. One of the main reasons given for continuing to use this energy source is that it is much less expensive than alternatives. The true cost, however, depends on what you include in the calculation. According to the Union of Concerned Scientists, there are so many costs not figured in the bills we pay for energy. The following includes just some of them:

  1. Human health problems caused by environmental pollution.
  2. Damage to the food chain from toxins absorbed and passed along.
  3. Damage to miners and energy workers.
  4. Damage to the earth from coal mining and fracking.
  5. Global warming caused by greenhouse gasses.
  6. Acid rain and groundwater pollution.
  7. National security costs from protecting oil sources and from terrorism (some of which is financed by oil revenues).

Additional Costs From Continued Subsidies

That’s not all. In addition to the above costs, each and every U.S. taxpayer has been subsidizing the oil industry since 1916, when the oil depletion allowance was instituted. Government subsidies in the U.S. are estimated to be between $4 billion and $52 billion annually. The worldwide figure is pegged between $775 billion and $1 trillion. Why don’t oil and gas companies and governments around the world divert at least some of these subsidies to invest in alternative clean energy sources? Rather than invest in the depleting and damaging energy sources of the past, isn’t it time to look to the future and stop “kicking the can down the road”?

More Hidden Costs

While some call it an urban legend, others say quite emphatically that the oil industry conspired with the automobile industry and other vested interests to put streetcars out of business so that people would be forced to use automobiles and buses to get from point A to B — selling more automobiles, tires, fuel, insurance, etc. Fact or fiction, many big cities (and especially Los Angeles, where alternatives are sparse) are choking from traffic gridlock. The first study on this subject determined that traffic congestion robbed the U.S. economy of $124 billion in 2013. That’s an annual cost of $1,700 per household. This is expected to waste $2.8 trillion by 2030 if we do not take immediate measures to reverse the situation. For those who are skeptical, visit Los Angeles and try to drive around. Even with Waze, much more time and energy is wasted sitting in traffic than you could ever imagine. A commute that formerly took five to 10 minutes can now take upwards of an hour.

There Is a Solution

The solution to many of the problems related to gridlock, damage to the environment and human health includes the following:

  1. Clean energy and storage. […]
  2. More effective and efficient transportation (clean and safe mass transit […]
  3. Better marketing of, and accounting for, the true cost of the alternatives.
  4. Investment to do it.
  5. Political vision and will to transparently tell the truth and make the investment.

Doing the Right Thing Is Rarely Easy

While what is most worthwhile is rarely easy, it is necessary for the planet and living things that call it home.  […]”<

See on Scoop.itGreen & Sustainable News