Clean Energy creates more jobs than fossil fuels, with a wage premium

Sustainability as an economic driving force does not need the distracting agenda of “Climate Change” to be viable.

Work and Climate Change Report

Following on the January 2017  report US Energy and Employment from the U.S. Department of Energy, more evidence of the healthy growth of the clean energy industry comes in a report  by the Environmental Defense Fund Climate Corps and Meister consultants.  Now Hiring: The Growth of America’s Clean Energy and Sustainability Jobs    compiles the latest statistics from diverse sources,  and concludes that “sustainability” accounts for an estimated 4.5 million jobs (up from 3.4 million in 2011) in the U.S. in 2015. Sustainability jobs are defined as those in energy efficiency and renewable energy, as well as waste reduction, natural resources conservation and environmental education, vehicle manufacturing, public sector, and corporate sustainability jobs.  Statistics drill down to wages and working conditions – for example,  average wages for energy efficiency jobs are almost $5,000 above the national median, and wages for solar workers are above the national median of $17.04…

View original post 127 more words

Entrepreneurial Value and Energy Conservation

014.JPG

Photo of Arbutus Mall, Vancouver

As an engineer and self-proclaimed entrepreneur I find myself value driven when seeking opportunities.  Usually value is something which can measured, whether it be in profit, market share, response rate, efficiency in operations and resource management, or other metric.  It may be to date unrecognized or otherwise under-utilized or untapped resource which can be subject to improvements or other opportunities.

Education of the market can be a daunting task, and getting recognition may be challenging.  However, perseverance and targeted marketing can eventually lead to opportunities where value can be recognized in a structured manner where a service contract may be offered to complete the scope of the determined project.  Here are some personal thoughts that I am putting down in a Q/A format:

Q.  Why do I write a blog?

A.  Writing a blog on energy in our built and constructed world has multiple benefits.  I get to practice my writing and research skills, learn new and emerging technology, meet new people, continue my growth as an individual and professional, and publish my research.

Q.  Why do I write about energy?

A.  One of the reasons I choose energy conservation and efficiency is my own understanding of how we can rationalize construction projects and work by building operations savings.  In the past with failing mechanical systems in buildings I have specified upgrades to the building plant to improve operations and partially pay for the repairs and upgrades by operational savings.

Q.  What kind of professional services are needed in buildings?

A.  To start we must to perform baseline measurements of the building.  Before changes are made so as to establish existing consumption rates of energy and water, as well as waste streams.  By doing this we can examine methods of reducing consumption rates and establish priorities for improvements and budget proposals for improvements in building equipment, the building envelope, electrical and lighting, as well as fixing ongoing problems or other deficiencies.  Generally speaking, a building energy audit and report is proposed start to this process, where an informal meeting with building staff, obtaining existing plans and doing an initial onsite inspection of operations and systems.

Q.  How can we achieve energy savings and be more green?

A.  Small and local things can add up, this is a fundamental tenet of conservation.  Every act gets examined, where is the waste, what can be reduced, is it needed, how can we do this differently.  All questions need to be asked and answered where an environment is occupied, and can be quite intensive where industry or other energy intensive commercial enterprise may be involved.

Q.  Why do I need an outside consultant or professional to perform this work?

A.  There are many tools a consultant can use and bring to the table with a client.   Knowledge and understanding of systems are important and how they fit together, someone who has experience in systems design, has worked in the field and can provide a service to either establish an initial plan to overseeing the entire project, including design, execution and final occupancy.

Q.  What else is important besides an energy audit?

A.  After an energy audit, building condition review and report may follow a request for proposal if it is determined by the client that repairs are required and a budget for these may be established prior to commencing work.  Within the proposal will be a preliminary scope or statement of work.

 

 

Overly Simple Energy-Economy Models Give Misleading Answers

Does it make a difference if our models of energy and the economy are overly simple? I would argue that it depends on what we plan to use the models for. If all we want to do is determine approximately how many years in the future energy supplies will turn down, then a simple model is perfectly sufficient. But if we want to determine how we might change the current economy to make it hold up better against the forces it is facing, we need a more complex model that explains the economy’s real problems as we reach limits.We need a model that tells the correct shape of the curve, as well as the approximate timing. I suggest reading my recent post regarding complexity and its effects as background for this post.

The common lay interpretation of simple models is that running out of energy supplies can be expected to be our overwhelming problem in the future. A more complete model suggests that our problems as we approach limits are likely to be quite different: growing wealth disparity, inability to maintain complex infrastructure, and growing debt problems.Energy supplies that look easy to extract will not, in fact, be available because prices will not rise high enough. These problems can be expected to change the shape of the curve of future energy consumption to one with a fairly fast decline, such as the Seneca Cliff.

Source: Overly Simple Energy-Economy Models Give Misleading Answers

How Energy Shapes the Economy

In the beginning, the Master Economist created the Economy.  He created businesses large and small, consumers, governments with their regulation, and financial institutions of all types. And the Ma…

world-population-growth

Source: How Energy Shapes the Economy

Measuring and Monitoring Energy Efficiency

Defining Energy Efficiency

To begin, let us ask what is energy efficiency, what are it’s components and how is it measured.  To make comparisons we need to gather data using measures relevant to the industry in question, also to the input forms of energy, waste streams and the useful work performed.  In the case of a building we may use meters to measure consumption or utility bills and compare changes in consumption rates over time.

To an engineer, energy efficiency is the ratio of useful work over total energy input.  For example, a room air conditioner’s efficiency is measured by the energy efficiency ratio (EER). The EER is the ratio of the cooling capacity (in British thermal units [Btu] per hour) to the power input (in watts).

On a grander scale we may be looking improvements over an industry or sector, changing fuel types in a utility such as the conversion of a coal plant to the production of power fueled by natural gas to reduce the carbon load on the environment.  Efficiency may be measured by different metrics depending on the result sought and may include the environmental impact of waste streams.

EnergyEfficientEconomy

Figure 1:  Historical Energy Use Graph  (1)

Whatever the exact yearly investment figure, the historical economic impact of efficiency is quite clear. As the graph () shows, efficiency has provided three times more of the economic services than new production since 1970:

The blue line illustrates demand for energy services (the economic activity associated with energy use) since 1970; the solid red line shows energy use; and the green line illustrates the gain in energy efficiency. While demand for energy services has tripled in the last four decades, actual energy consumption has only grown by 40 percent. Meanwhile, the energy intensity of our economy has fallen by half.

The area between the solid red line and the blue line represents the amount of energy we did not need to consume since 1970; the area between the dashed red line and the solid red line indicates how much energy we consumed since 1970.

The chart shows that energy efficiency met nearly three quarters of the demand for services, while energy supply met only one quarter.

“One immediate conclusion from this assessment is that the productivity of our economy may be more directly tied to greater levels of energy efficiency rather than a continued mining and drilling for new energy resources,” wrote Laitner. (1)

As noted in an article by the EIA;  The central question in the measurement of energy efficiency may really be “efficient with respect to what?” (2)  In general terms when discussing energy efficiency improvements we mean to perform more of a function with the same or less energy or material input.

Energy Efficiency Measures

Energy efficiency measures are those improvement opportunities which exist in a system which when taken will achieve the goals of achieving greater performance.  For example refer to Table 1 of Energy Efficiency Measures which can be effectively reduce energy consumption and provide an ROI of 5 or less years when applied to the commercial refrigeration industry.

energy efficient refrigeration4.jpg

Table 1:  Commercial Refrigeration Energy Efficiency Measures (3)


Government Action on Energy Efficiency

Energy efficiency has been put forward as one of the most effective methods in efforts to address the issue of Climate Change.  Recently, on February 19, 2015, President Obama signed Executive Order (EO) 13693.

“Since the Federal Government is the single largest consumer of energy in the Nation, Federal emissions reductions will have broad impacts.  The goals of EO 13693 build on the strong progress made by Federal agencies during the first six years of the Administration under President Obama’s 2009 Executive Order on Federal Leadership on Environmental, Energy and Economic Performance, including reducing Federal GHG emissions by 17 percent — which helped Federal agencies avoid $1.8 billion in cumulative energy costs — and increasing the share of renewable energy consumption to 9 percent.  

With a footprint that includes 360,000 buildings, 650,000 fleet vehicles, and $445 billion spent annually on goods and services, the Federal Government’s actions to reduce pollution, support renewable energy, and operate more efficiently can make a significant impact on national emissions. This EO builds on the Federal Government’s significant progress in reducing emissions to drive further sustainability actions through the next decade. In addition to cutting emissions and increasing the use of renewable energy, the Executive Order outlines a number of additional measures to make the Federal Government’s operations more sustainable, efficient and energy-secure while saving taxpayer dollars. Specifically, the Executive Order directs Federal agencies to:

– Ensure 25 percent of their total energy (electric and thermal) consumption is from clean energy sources by 2025.

– Reduce energy use in Federal buildings by 2.5 percent per year between 2015 and 2025.

– Reduce per-mile GHG emissions from Federal fleets by 30 percent from 2014 levels by 2025, and increase the percentage of zero emission and plug in hybrid vehicles in Federal fleets.

– Reduce water intensity in Federal buildings by 2 percent per year through 2025. ” (4)


Summary

Energy efficiency has gained recognition as a leading method to reduce the emissions of GHG’s seen to be the cause of climate change.  Under scrutiny, we find that there are different measures of efficiency across different industry, fuel types and levels.  For example on a micro-level, the functioning of a system may be improved by including higher efficiency components in it’s design, such as motors and pumps.

However, there are other changes which can improve efficiency.  Adding automated computer controls can improve a system level efficiency.   Utilities may change from coal burning to natural gas fired power plants, or industry may convert to a process to include for co-generation.  Battery storage and other technological improvements may come along to fill in the gap.

Historically Energy Efficiency measures have proven to be gaining ground by employing people with the savings earned when applying measures to reduce consumption.  These savings reverberate through the economy in a meaningful way, by reducing the need for the construction of more power plants as one example as we on an individual level.  We consume less energy, and using higher efficiency electronic equipment, and other energy savings measures at a consumer level, our communities are capable of more growth with existing energy supplies.

jEnergy production and consumption, as well as population growths also arise to other issues related to energy consumption, such as water consumption, water waste, and solid material waste.  Building with sustainable materials which promote healthy living environments is gaining importance as we understand the health impacts of a building’s environment on the health and well-being of the occupants.  Energy efficiency in the modern era, as we see from recent government mandates and sustainability programs, such as LEED’s for one, also includes for reductions in water intensity and incorporation of renewable energy programs as an alternative to increasing demand on existing utilities.

 

 

Related Blog Posts:

References

  1. http://www.greentechmedia.com/articles/read/report-u.s.-energy-efficiency-is-a-bigger-industry-than-energy-supply
  2. http://www.eia.gov/emeu/efficiency/measure_discussion.htm
  3. http://www.nwfpa.org/nwfpa.info/component/content/article/52-refrigeration/284-energy-efficient-refrigeration-systems
  4. https://www.whitehouse.gov/administration/eop/ceq/sustainability

Ski resorts and climate change

Mountain Journal

As climate change bears down on us, winters become ever more erratic. This impacts on the economic viability of ski resorts and the jobs of people who rely on them.  In their quest to remain commercially viable, most ski resorts are adopting the double edged strategy of claiming a space in the ‘green season’ tourism market while also investing in snow making technology. A small number are also showing leadership in terms of grappling with the actual problem of climate change. Sadly, no Australian resorts are in this category.

View original post 942 more words

Energy Storage Compared to Conventional Resources Using LCOE Analysis

In its first analysis of the levelized cost of storage, Lazard finds some promising economic trends.

Sourced through Scoop.it from: www.greentechmedia.com

“[…] “Although in its formative stages, the energy storage industry appears to be at an inflection point, much like that experienced by the renewable energy industry around the time we created the LCOE study eight years ago,” said George Bilicic, the head of Lazard’s energy and infrastructure group, in a release about the report.

Lazard modeled a bunch of different use cases for storage in front of the meter (replacing peaker plants, grid balancing, and equipment upgrade deferrals) and behind the meter (demand charge reduction, microgrid support, solar integration). It also modeled eight different technologies, ranging from compressed-air energy storage to lithium-ion batteries.

“As a first iteration, Lazard has captured the complexity of valuating storage costs pretty well. Unlike with solar or other generation technologies, storage cost analysis needs to account for not just different technologies, but also location and application, essentially creating a three-dimensional grid,” said Ravi Manghani, GTM Research’s senior storage analyst.

In select cases, assuming best-case capital costs and performance, a handful of storage technologies rival conventional alternatives on an unsubsidized basis in front of the meter. Using lithium-ion batteries for frequency regulation is one example. Deploying pumped hydro to integrate renewables into the transmission system is another.  […]

See on Scoop.itGreen Energy Technologies & Development

Documentary on Fracking – Shattered Ground Hosted by David Suzuki

The Nature of Things – Shattered Ground

fracking documentary

Sourced through Scoop.it from: www.youtube.com

ShatteredGround

image credit:  (2)

“[…] “Fracking”, or Hydraulic Fracturing, is a new technology that has opened up immense resources of natural gas buried in deep shale beds. The process involves injection of highly-pressurized water, sand and chemicals to shatter underground layers of shale and extract previously inaccessible natural gas.
But the process and its sudden spread across the North American landscape, has become an incredibly divisive issue, ripping apart communities and even families. The backlash to the gas industry is unprecedented, with some countries, Canadian provinces and American states adopting fracking bans and moratoriums. […] “(1)

(1) http://www.cbc.ca/natureofthings/episodes/shattered-ground 

“[…] In Dimock, Pennsylvania, residents found their water contaminated after fracking began nearby.  As it turns out, the cement casings that were meant to prevent the water from escaping had failed, and now all of their water was contaminated.  One man described his daughter’s experience showering in that water:

“My daughter would get in the shower in the morning, and she would have to get out and lay on the floor because she thought she was going to pass out from the methane.  She had eczema on the insides of her arms, hives up and down her body, and she said, ‘I want to have kids some day’.  You know, my job is to protect my kids, how do I protect them from this?” […] “(2)

(2) http://aftw.net/2015/08/31/shattered-ground-review/

See on Scoop.itGreen Energy Technologies & Development

Alberta Air Pollution Levels High in Sulphur and Nitrogen Reports Environment Canada

Environment Canada recently released images showing air emissions modelling results across Alberta. These images are a reminder of how a small number of large sources mix together to pollute the air Albertans breathe, resulting in increased risks to human health.

Sourced through Scoop.it from: www.pembina.org

“[…] SO2 and NOx emissions impact human health not only because they can cause direct harm, but also because they can react in the atmosphere to create fine particulate matter (PM2.5). The Alberta government has found that NOx and SO2 are the main causes of past incidents where PM2.5­ concentrations have exceeded Canada’s air quality standards.

PM2.5 can cause asthma attacks, hospitalizations and even premature death, as we’ve summarized before. It’s a particular concern in Alberta, where PM2.5 is putting us on track to have the worst air quality in Canada, and Edmonton’s pollution levels are exceeding Toronto’s.

These images underscore the cumulative impacts of a small number of very large industrial emissions sources — particularly coal plants, the oilsands and refineries — in addition to distributed industrial activities such as oil and gas operations. Those may all be separate sources, but their emissions end up in the same air. Pollutants from these different sources mix together in the air Albertans breathe, resulting in increased risks to human health. […]

Alberta is unique in the western half of North America for its mid- and high-level readings. The province more closely resembles the densely populated mid-Atlantic region of the United States, or the coal-burning Midwest, than our western neighbours.

Problem spots near coal plants, refineries and the oilsands

Another image shows how SO2 and NOX that is released into the atmosphere returns to ground level, or “deposits.” The image reveals a clear concentration (the orange and red spots) of the two pollutants being deposited around both Edmonton and the oilsands in northeast Alberta.

Edmonton is sandwiched between three large coal-burning power plants, which are clustered near Wabamun Lake west of Edmonton, and refineries on the east side of the city.

The video that AEMERA posted shows modelled SO2 plumes from large emitters across British Columbia, Alberta and Saskatchewan. The three-dimensional plumes reflect SO2 concentrations of at least three parts per billion. How the plumes travel was modelled using real weather conditions from a four-week period in the fall of 2013.

The video visually represents where SO2 is generated, how it moves through the atmosphere and where it eventually lands. As SO2 deposits on the ground, the land surface in the video changes colour to indicate where higher depositions are modelled. Although the specifics will differ for other pollutants, the video is representative of how airborne pollutants generally are dispersed and deposited.

It’s not particularly surprising to see that SO2 pollution originates from oil and gas production, coal plants and the oilsands — Alberta’s three largest-emitting sectors, by far. But seeing how much of the province is affected by these plumes may come as a shock.

The video shows that major industrial emissions do not blow in the direction of the prevailing wind pattern. Rather, they shift directions and can be combined with pollutants emitted in different areas. This raises concerns about environmental evaluations for new industrial emitters, since those evaluations focus on a much smaller area around the polluter — and focus on prevailing winds — rather than these dynamic wind patterns.

The data used for the oilsands is from 2010, so it discounts the emissions growth in that region over the last five years. The data for the rest of the sources is from 2006. In terms of coal emissions, these images correspond closely to today’s reality: NOx and SO2 in 2014 are at nearly the same levels as in 2006. […]”

 

See on Scoop.itGreen & Sustainable News