Is the Automobile Industry the Next Bubble?

Over the past year and recently there have been significant changes happening in the North American automotive sector. Other parts of the world have been ramping up the development of the Electric Vehicle, with a number of countries and cities proposing banning or limiting sales of fossil fueled powered vehicles to meet future Climate Accord CO2 emission reductions.

World wide we see that auto manufacturers are making the switch over to the development of the EV which will eventually replace the ICE (Internal Combustion Engine).

Industry involvement in promoting electric vehicles

“To meet future demand for EVs, auto manufacturers need to plan and gear up for the relevant changes to design and manufacturing processes. Normally, government calls for reduced vehicle emissions are met with resistance from the private sector. According to Winfried Hermann, transport minister for Stuttgart, “We say, clean up your technology, they say it is impossible.”[5] Nevertheless, many automakers are now planning to sell most of their vehicle fleet in electric versions. According to Volvo’s CEO, the manufacturer aims for 50 percent of sales to be fully electric by 2025.[6]

Other companies including BMW and Renault have committed to significant increases in EV production in the next two years and plan on a full transition in the near future. The PSA Group, which owns Peugeot and Citroen, stated its intentions to electrify 80 percent of its fleet for production by 2023, and Toyota is manufacturing its first fully electrified Prius to meet California’s updated vehicle standards for 2020.[7] Toyota also announced it will be adding more than 10 EV models by the early 2020s, and has partnered with Panasonic to develop a new EV battery.[8] Companies that have already produced fully electrified cars, such as Nissan, are setting the pace by providing more variety to make EVs appealing to consumers with diverse needs. Aston Martin, Jaguar, and Land Rover, producers of luxury cars, have also spoken publicly about their company goals to move toward electrifying vehicles.[9] German-owned makers of Rolls-Royce and Mini Cooper vehicles plan to bring 25 electric models to market by 2025, in line with the goals that several European countries have targeted for the end of new ICE vehicle sales.[8] Additionally, they hope to stay ahead of shifting market demands and the impending European target goals by increasing research and development spending to 7 billion euros.[8] The largest auto manufacturer in Europe, Volkswagen, has pledged 20 billion euros for its electric car program, and its luxury brand Porsche, in collaboration with Audi, will release 20 electrified models by 2025.[8] […]”

One recent report details statistics provided by the US EPA, where 15% of man-made carbon emissions are produced by the transportation sector, and the US transportation represents 27% of national carbon emissions.

Technological developments in renewable energy, energy storage and batteries, autonomous vehicles, Internet of Things, materials, and many other nascent and emerging sectors. Changes in society as more people congregate in cities while the baby boomer generation are departing from the consumer sector, and emerging Millenials are making new choices in spending and interaction with the world.

Advertisement

Banning the Internal Combustion Engine: Is this the end of Fossil Fuels?

As a general rule I find that most North Americans are unaware that there is a growing movement of countries that are banning new sales of vehicles powered by gasoline or diesel and may also include other fuels such as propane, compressed and LNG (liquid natural gas).

The local news is rife with plans to grow our exploitation of natural resources and build more pipelines for anticipated expansion to new markets such as China. The federal government is in the process of colluding with the petroleum industry to force the construction of a dil-bit pipeline in a densely populated region of Greater Vancouver.  Meanwhile our future markets are vanishing as other governments are phasing out fossil fuels and their engines.

Image #1: A rendering of the Silent Utility Rover Universal Superstructure (SURUS) platform with truck chassis. 

SURUS was designed to form a foundation for a family of commercial vehicle solutions that leverages a single propulsion system integrated into a common chassis. (1)

Fuel cell technology is a key piece of GM’s zero-emission strategy.

General Motors’ Silent Utility Rover Universal Superstructure (SURUS) is an electric vehicle platform with autonomous capabilities powered by a flexible fuel cell. GM displayed it at the fall meeting of the Association of the United States Army, as the commercially designed platform could be adapted for military use.

SURUS leverages GM’s newest Hydrotec fuel cell system, autonomous capability and truck chassis components to deliver high-performance, zero-emission propulsion to minimize logistical burdens and reduce human exposure to harm. Benefits include quiet and odor-free operation, off-road mobility, field configuration, instantaneous high torque, exportable power generation, water generation and quick refueling times. (1)

 

Table 1. List of Countries Banning the ICE & Timeline (2)
Wikipedia Table of Countries Banning the Internal Combustion Engine.png

At an automotive conference in Tianjin, China revealed it was developing plans towards banning fossil fuel-based cars. Though China has not set a 2040 goal like the U.K. and France, it said it was working with other regulators on a time-specific ban.

“The ministry has also started relevant research and will make such a timeline with relevant departments. Those measures will certainly bring profound changes for our car industry’s development,” Xin Guobin, the vice minister of industry and information technology, said.

Both India and Norway have also said they have electric car targets set for the next few decades. India, home to heavily polluted cities, said by 2030 it plans to have vehicles solely powered by electricity. (3)

Final Remarks:

I explain this worldwide movement to the electric vehicle and the impact this will have oil markets, however, most of whom I discuss this issue with are unaware of these vital facts. In addition we are seeing growing alternate forms of power sources for our electrical grid, such as solar, wind, tidal, hydro-electric, geothermal and others.

If you ran a business that called for a major investments in capital for infrastructure, would you make it knowing that your market is non-existent? Maybe it’s time for Canadians and Americans to wake up and smell the coffee.

References:

  1. fuel-cell-electric-truck-platform
  2. List_of_countries_banning_fossil_fuel_vehicles
  3. how-internal-combustion-engine-bans-could-catalyze-big-oil-concerns

Hybrid Electric Bus uses Hydrogen as Fuel

“[…] According to Paulo Emilio, this is the most efficient hydrogen bus in the world. “A European company tested a hydrogen bus in ten cities, which consumed 25 kilos of hydrogen for each 100 kilometers; this month, the same company launched an improved version, with 14 kilos of hydrogen consumed for each 100 kilometers” where as “our bus consumes just 5 kilos of hydrogen”, he says. […]”

via Literally, a green bus

Sustainable Smart Cities and Disaster Mitigation – Preparing for the 1000 Year Storm

Hurricanes Cause Massive Damage

In light of recent events, such as the current hurricane season of 2017 which has already struck large sections of Texas with Hurricane Harvey causing massive damage which has been estimated at $180 billion by Texas Governor Greg Abbott (1) there are questions about how we can prepare cities better for disaster. One method considered is in our building codes, which are constantly being upgraded and improved, by constructing buildings to be more resilient and handle harsher conditions.

There is a limit to what a building code can do and enforce. Areas and regions that have seen widespread destruction, will have to be rebuilt.  However, to what standards? The existing building codes will have to be examined for their efficacy in storm-proofing buildings to withstand the effects of high winds and water penetration, some of which has already been performed.

Codes do not prevent external disasters such as from storms, tornadoes, tidal waves (tsunami), earthquakes, forest fire, lightning, landslides, nuclear melt-down and other extreme natural and man-made events. What building codes do is establish minimum standards of construction for various types of buildings and structures. Damage to buildings, vehicles, roads, power systems and other components of a city’s infrastructure are vulnerable to flooding which cannot be addressed in a building code. Other standards are needed to address this problem.

Storm-Proofing Cities

Other issues arise regarding flooding, and how water can be better managed in the future to mitigate water collection and drainage. These may require higher levels of involvement across a community and perhaps beyond municipal constraints, requiring state-wide developments. Breakwaters, sea walls, levees, spill ways and other forms of structures may be added to emergency pumping stations and micro-grid generator/storage facilities as examples of infrastructure improvements that could be utilized.

Bigger decisions may have to be considered as to the level of reconstruction of buildings in vulnerable areas. Sea warming as noted occurring has some scientists pondering if there is a connection between global warming and increased storm volatility as indicated by water temperature rises and tidal records (2). If bigger and more frequent storms are to come, then it must be considered in future building and infrastructure planning.

Regional Infrastructure and Resiliency

Exposed regions as well as larger, regional concerns in areas of maintaining power, roadways, and diverting and draining water are major in the resiliency of a community. When a social network breaks down, there is much lost, and recovery of a region can be adversely affected by loss of property and work.

Many of the lower classes will not have insurance and lose everything. Sick and elderly can be especially exposed, not having means to prepare or escape an oncoming disaster, and many will likely perish unless they can get access to aide or a shelter quickly.

Constructing better sea walls and storm surge barriers may be an effective means to diverting water in the event of a hurricane on densely populated coastal areas. Although considered costly to construct, they are a fraction of the cost of damage that may be caused by a high, forceful storm surge which can obliterate large unprotected populated areas. The Netherlands and England have made major advancements in coastal preparedness for storms.

Storm Surge Barriers

Overall Effectiveness for Reducing Flood Damage

There are only a few storm surge barriers in the United States, although major systems installed abroad demonstrate their efficacy. The Eastern Scheldt barrier in the Netherlands (completed in 1986) and the Thames barrier in the United Kingdom (completed in 1982) have prevented major flooding. Lavery and Donovan (2005) note that the Thames barrier, part of a flood risk reduction system of barriers, floodgates, floodwalls, and embankments, has reliably protected the City of London from North Sea storm surge since its completion.

Four storm surge barriers were constructed by the USACE in New England in the 1960s (Fox Point, Stamford, New Bedford, and Pawcatuck) and a fifth in 1986 in New London, Connecticut. The barriers were designed after a series of severe hurricanes struck New England in 1938, 1944, and 1954 (see Appendix B), which highlighted the vulnerability of the area. The 1938 hurricane damaged or destroyed 200,000 buildings and caused 600 fatalities (Morang, 2007; Pielke et al., 2008).

The 2,880-ft (878-m) Fox Point Barrier (Figure 1-8) stretches across

the Providence River, protecting downtown Providence, Rhode Island. The barrier successfully prevented a 2-ft (0.6-m) surge elevation (in excess of tide elevation) from Hurricane Gloria in 1985 and a 4-ft (1.2-m) surge from Hurricane Bob in 1991 (Morang, 2007) and was also used during Hurricane Sandy. The New Bedford, Massachusetts, Hurricane Barrier consists of a 4,500-ft-long (1372-m) earthen levee with a stone cap to an elevation of 20 ft (6 m), with a 150-ft-wide (46-m) gate for navigation. The barrier was reportedly effective during Hurricane Bob (1991), an unnamed coastal storm in 1997 (Morang, 2007), and Hurricane Sandy. During Hurricane Sandy, the peak total height of water (tide plus storm surge) was 6.8 feet (2.1 m), similar to the levels reached in 1991 and 1997. The Stamford, Connecticut, Hurricane Barrier has experienced six storms producing a surge of 9.0 ft (2.7 m) or higher between its completion (1969) and Hurricane Sandy. During Hurricane Sandy, the barrier experienced a storm surge of 11.1 ft (3.4 m), exceeding that of the 1938 hurricane (USACE, 2012). (3)

The biggest challenge is to build storm surge barriers large enough for future Hurricanes. There is a question that given the magnitude of current and future storms that these constructed barriers may be breached.  Engineers design structures to meet certain standards, and with weather these were the unlikely 1 in 100 year storm events. However, this standard is not good enough as Hurricane Katrina in Louisiana exemplified, as being rated a 1 in 250 year storm event. With climate changes these events may become more frequent.

Much of the damage from Katrina came not from high winds or rain but from storm surge that caused breaches in levees and floodwalls, pouring water into 80 percent of New Orleans. To the south, Katrina flooded all of St. Bernard Parish and the east bank of Plaquemines Parish. Plaquemines Parish flooded again in 2012 with Hurricane Isaac.

Soon after Katrina, Congress directed the Corps of Engineers to build a system that could protect against a storm that has a 1 percent chance of happening each year, a “1-in-100-year” storm.

The standard is less a measure of safety and more a benchmark that allows the city to be covered by the National Flood Insurance Program. Louisiana’s master coastal plan calls for a much stronger 500-year system. The corps says Katrina was a 250-year storm for the New Orleans area.

Since 2005, the Army Corps has revamped the storm protection system’s 350 miles of levees and floodwalls, 73 pumping stations, three canal-closure structures, and four gated outlets. The corps built a much-heralded 26-foot-high, 1.8-mile surge barrier in Lake Borgne, about 12 miles east of the center of the city.

During Katrina, a 15- to 16-foot-high storm surge in Lake Borgne forced its way into the Intracoastal Waterway, putting pressure on the Industrial Canal levees that breached and caused catastrophic flooding in the city’s Lower 9th Ward.

“In New Orleans, we know that no matter how high we build this or how wide we build it, eventually there will be a storm that’s able to overtop it,” New Orleans District Army Corps spokesman Ricky Boyett says, admiring the immense surge barrier from a boat on Lake Borgne. “What we want is this to be a strong structure that will be able to withstand that with limited to no damage from the overtopping.” (4)

500 Year Floods

Hurricane Harvey brought an immense amount of extreme rain, which brought a record 64″ in one storm to the Houston metropolitan region. This is a staggering amount of water, over 5 feet in height, this amount of water could only overwhelm low-lying areas, and depressions in topography. Flash floods can happen during extreme storms, where a drainage system is designed for a 1:100 year flood event, and not for a 1:500 or 1:1000 year flood event. Road ways can easily become rivers as drainage systems back up and surface water has no place to collect.

500-year-floods

Figure 1. 500 year flood events in the USA since 2015 (5)

New standards in development may need to accommodate more stringent standards. Existing municipal drainage systems are not designed to handle extreme rain and other means of drainage systems may have to be developed to divert water away from centers of population. Communities will be built to new standards, where storm water management is given a higher priority to avert flooding.

BN-UX285_HARVEY_M_20170831100012

Figure 2. Floodwaters from Tropical Storm Harvey (6)

Given the future uncertainty of our climate and weather, we cannot continue to ignore the devastating effects that disasters have on cities and regions. We must ask some difficult questions regarding the intelligence of continuing to build and live in increasingly higher risk regions.

On a personal level every citizen must take some responsibility in their choices of where to live. As for governments they need to decide how best to allocate limited resources in rebuilding and upgrading storm protection systems. It is anticipated that some areas will be abandoned as risks become too high for effective protection from future storm events.

The Oil and Gas Industry

It seems there is an irony involved with the possibility that storms severity is linked to global warming, and that access to vulnerable regions often are in part economically driven by the oil and gas industry.  Hurricane Harvey is the most recent storm which is affecting fuel prices across the USA. Refinery capacity has shrunk due to plant shut-downs.  Shortages in local fuel supplies are occurring, as remaining gasoline stations run dry.

Goldman Sachs estimates that the hurricane has taken 3 million barrels a day — or about 17% — of refining capacity offline, and that’s likely to increase the overall level of crude-oil inventories over the next couple of months. (7)

Oil and gas are particularly vulnerable to exposure to the weather, and it is in their own best interests to provide local protection to the area so that they can continue extracting the resource. However, ancillary industries such as refining may better be served by relocation away from danger areas. Also, supply lines become choked by disaster, and can potentially have consequences beyond the region which was exposed to the disaster.

The Electric Vehicle in the Smart City

Such events can only put upward pressure on the price of fuel, while providing further incentive to move away from the internal combustion engine as means of motive power. Electric vehicles would provide a much better ability to recover quickly from storm events as they are not restricted by access to fuel. Micro-grids in cities provide sectors of available power for which electric emergency response vehicles can move.

By moving reliance away from carbon based fuels to renewable electric sources and energy storage, future development in cities may see the benefits inherent in the electric vehicle. Burning fuels create heat, water and carbon dioxide in the combustion process. They consume our breathable oxygen and pollute the atmosphere. Pipelines, tankers and rail cars can break and spill causing pollution. Exploration causes damage to the environment.

A city that is energy efficient and reliant on renewable sources of energy that benignly interact with the environment can approach self-sustainability and a high degree of resilience against disaster. This combined with designing to much higher standards which keep in mind the current volatility our climate is experiencing, and uses the lessons learned in other areas as indicators of best practices into the future.

 

References

  1. Hurricane Harvey Damages Could Cost up to $180 Billion
  2. Global warming is ‘causing more hurricanes’
  3. “3 Performance of Coastal Risk Reduction Strategies.” National Research Council. 2014. Reducing Coastal Risk on the East and Gulf Coasts. Washington, DC: The National Academies Press. doi: 10.17226/18811.
  4. Rising Sea Levels May Limit New Orleans Adaptation Efforts
  5. Houston is experiencing its third ‘500-year’ flood in 3 years. How is that possible?
  6. Hurricane Harvey Slams Texas With Devastating Force
  7. GOLDMAN: Harvey’s damage to America’s oil industry could last several months

Aluminum, a Quantum Leap in Renewable Energy Storage

The future for the metal aluminum has never looked better, for the great investment it represents as a multi-faceted energy efficiency lending material, electrical energy storage medium (battery), and for the advancement of renewable energy sources.  These are spectacular claims, and yet in 1855 aluminum was so scarce it sold for about 1200 $/Kg (1) until metallurgists Hall & Heroult invented the modern smelting process over 100 years ago (2).

Image result for aluminum electrolysis

Figure 1.  Schematic of Hall Heroult Aluminum Reduction Cell (3)

 

Aluminum is an energy intensive production process.  High temperatures are required to melt aluminum to the molten state.  Carbon electrodes are used to melt an alchemical mixture of alumina with molten cryolite, a naturally occurring mineral.  The cryolite acts as an electrolyte to the carbon anode and cathodes.  Alumina (Al2O3) also known as aluminum oxide or Bauxite is fed into the cell and dissolved into the cryolite, over-voltages reduce the Al2O3 into molten aluminum which pools at the bottom of the cell and is tapped out for further refining.

Aluminum Smelting Process as a Battery

The smelting of Aluminum is a reversible electrolytic reaction, and with modifications to current plant design it is possible to convert the process to provide energy storage which can  be tapped and supplied to the electrical grid when required.  According to the research the biggest challenge to this conversion process is to maintain heat balances of the pots when discharging energy to prevent freeze-up of the cells.  Trimet Aluminum has overcome this problem by incorporating shell heat-exchange technology to the sides of the cell to maintain operating temperatures.  Trial runs with this technology have been positive where plans are to push the technology to +/- 25% energy input/output.  If this technology is applied to all 3 Trimet plants in Germany, it is claimed that up to 7700 MWh of electrical storage is possible (4).

Trimet Aluminum SE, Germany’s largest producer of the metal, is experimenting with using vast pools of molten aluminum as virtual batteries. The company is turning aluminum oxide into aluminum by way of electrolysis in a chemical process that uses an electric current to separate the aluminum from oxygen. The negative and positive electrodes, in combination with the liquid metal that settles at the bottom of the tank and the oxygen above, form an enormous battery.

By controlling the rate of electrolysis, Trimet has been able to experiment with both electricity consumption and storage.  By slowing down the electrolysis process, the plant is able to adjust its energy consumption up and down by roughly 25 percent.  This allows the plant to store power from the grid when energy is cheap and abundant and resell power when demand is high and supply is scarce. (5)

Related image

Figure 2. TRIMET Aluminium SE Hamburg with emission control technology (6)

 

Image result

Figure 3.  Rio Tinto Alcan inaugurates new AP60 aluminum smelter in Quebec (7)

Aluminum as a Material and it’s Energy Efficiency Properties

Aluminum and it’s alloys generally have high strength-to-weight ratio’s and are often specified in the aircraft industry where weight reduction is critical.  A plane made of steel would require more energy to fly,  as the metal is heavier for a given strength.  For marine vessels, an aluminum hull structure, built to the same standards, weighs roughly 35% to 45% less than the same hull in steel (8). Weight reduction directly converts to energy savings as more energy would be required to propel the aircraft.

Other modes of transportation, including automobiles, trucking, and rail transport may similarly also benefit from being constructed of lighter materials, such as aluminum.  Indeed this would continue the long-standing trend of weight reduction in the design of vehicles.  The recent emergence of electric vehicles (EV’s) have required weight reduction to offset the high weight of batteries which are necessary for their operations.  The weight reduction translates into longer range and better handling.

Image result

Figure 4.  Tesla Model S (9)

 

In the 1960s, aluminium was used in the niche market for cog railways. Then, in the 1980s, aluminium emerged as the metal of choice for suburban transportation and high-speed trains, which benefited from lower running costs and improved acceleration. In 1996, the TGV Duplex train was introduced, combining the concept of high speed with that of optimal capacity, transporting 40% more passengers while weighing 12% less than the single deck version, all thanks to its aluminium structure.

Today, aluminium metros and trams operate in many countries. Canada’s LRC, France’s TGV Duplex trains and Japan’s Hikari Rail Star, the newest version of the Shinkansen Bullet train, all utilize large amounts of aluminium.  (10)

Image result

Figure 5.   Image of Japanese Bullet Train  (11)

Aluminum For Renewable Energy

One of the biggest criticisms against renewable technologies, such as solar and wind has been that they are intermittent, and not always available when demand demand for energy is high.  Even in traditional grid type fossil fuel plants it has been necessary to operate “peaker plants” which provide energy during peak times and seasons.

In California, recent technological breakthroughs in battery technology have been seen as a means of providing storage options to replace power plants for peak operation. However, there remains skepticism that battery solutions will be able to provide the necessary storage capacity needed during these times (12).  The aluminum smelter as an energy provider during these high demand times may be the optimum solution needed in a new age renewables economy.

The EnPot technology has the potential to make the aluminium smelting industry not only more competitive, but also more responsive to the wider community and environment around it, especially as nations try to increase the percentage of power generated from renewable sources.

The flexibility EnPot offers smelter operators can allow the aluminium industry to be part of the solution of accommodating increased intermittency.  (13)

References:

(1)  http://www.aluminum-production.com/aluminum_history.html

(2)  http://www.aluminum-production.com/Basic_functioning.html

(3)  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532000000300008

(4)  The ‘Virtual Battery‘ – Operating an Aluminium Smelter with Flexible Energy Input.  https://energiapotior.squarespace.com/s/Enpot-Trimet-LightMetals2016.pdf

(5)  http://www.metalsproclimate.com/metals-pro-climate/best-practice/reduction-of-pfc-process-emissions

(6) http://www.sauder.ubc.ca/Faculty/Research_Centres/Centre_for_Social_Innovation_and_Impact_Investing/Programs/Clean_Capital/Clean_Capital_News_Archive_2014/Aluminum_smelters_could_act_as_enormous_batteries

(7)  http://www.canadianmetalworking.com/2014/01/rio-tinto-alcan-inaugurates-new-ap60-aluminum-smelter-in-quebec/

(8)  http://www.kastenmarine.com/alumVSsteel.htm

(9)  http://www.greencarreports.com/news/1077672_2012-tesla-model-s-is-aluminum-its-secret-weapon

(10)  http://transport.world-aluminium.org/en/modes/trainssubways.html

(11)  http://www.aluminiumleader.com/focus/aluminium_carriages_help_provide_high_speed_rail_service/

(12)  http://www.bloomberg.com/news/articles/2015-12-22/batteries-gaining-favor-over-gas-peaker-plants-in-california

(13)  http://www.energiapotior.com/the-virtual-battery

The End of Oil Domination? – German Government Votes to Ban Sales of ICE Vehicles by 2030

aid_diesel-2

Figure 1:  Chart showing recent drop in Diesel Car sales, AID Newsletter

 

“[…] Germany’s Bundesrat has passed a resolution to ban the internal combustion engine starting in 2030,Germany’s Spiegel Magazin writes. Higher taxes may hasten the ICE’s departure.

An across-the-aisle Bundesrat resolution calls on the EU Commission in Brussels to pass directives assuring that “latest in 2030, only zero-emission passenger vehicles will be approved” for use on EU roads. Germany’s Bundesrat is a legislative body representing the sixteen states of Germany. On its own, the resolution has no legislative effect. EU type approval is regulated on the EU level. However, German regulations traditionally have shaped EU and UNECE regulations.

EU automakers will be alarmed that the resolution, as quoted by der Spiegel, calls on the EU Commission to “review the current practices of taxation and dues with regard to a stimulation of emission-free mobility.”

  • “Stimulation of emission-free mobility” can mean incentives to buy EVs. Lavish subsidies doled out by EU states have barely moved the needle so far.
  • A “review the current practices of taxation and dues” is an unambiguously broad hint to end the tax advantages enjoyed by diesel in many EU member states. The lower price of diesel fuel, paired with its higher mileage per liter, are the reason that half of the cars on Europe’s roads are diesel-driven. Higher taxes would fuel diesel’s demise. […]

With diesel already on its tipping point in Europe, higher taxes and increased prices at the pump would be the beginning of the fuel’s end. As evidenced at the Paris auto show, the EU auto industry seems to be ready to switch to electric power, and politicians just signaled their willingness to force the switch to zero-emission, if necessary. Environmentalists undoubtedly will applaud this move, and the sooner diesel is stopped from poisoning our lungs with cancer-causing nitrous oxide, the better. Cult-like supporters of electric carmaker Tesla will register the developments with trepidation.

When EU carmakers are forced by law to produce the 13+ million electric cars the region would need per year, the upstart carmaker would lose its USP, and end up as roadkill. Maybe even earlier. Prompted by a recent accident on a German Autobahn, experts of Germany’s transport ministry declared Tesla’s autopilot a “considerable traffic hazard,” Der Spiegel wrote yesterday.Transport Minister Dobrindt so far stands between removing Germany’s 3,000 Tesla cars from the road, the magazine writes. Actually, until the report surfaced, the minister’s plan was to subsidize Autopilot research in Germany’s inner cities. “Let’s hope no Tesla accident happens,” the minister’s bureaucrats told Der Spiegel. It happened, but no-one died.”

Via Forbes:  http://bit.ly/2e8HSQf

 

Electric Vehicles Future Threatens OPEC

The oil cartel is living in a time-warp, seemingly unaware that global energy politics have changed forever

Sourced through Scoop.it from: www.telegraph.co.uk

“…OPEC says battery costs may fall by 30-50pc over the next quarter century but doubts that this will be enough to make much difference, due to “consumer resistance”.

This is a brave call given that Apple and Google have thrown their vast resources into the race for plug-in vehicles, and Tesla’s Model 3s will be on the market by 2017 for around $35,000.

Ford has just announced that it will invest $4.5bn in electric and hybrid cars, with 13 models for sale by 2020. Volkswagen is to unveil its “completely new concept car” next month, promising a new era of “affordable long-distance electromobility.”

The OPEC report is equally dismissive of Toyota’s decision to bet its future on hydrogen fuel cars, starting with the Mirai as a loss-leader. One should have thought that a decision by the world’s biggest car company to end all production of petrol and diesel cars by 2050 might be a wake-up call.

Goldman Sachs expects ‘grid-connected vehicles’ to capture 22pc of the global market within a decade, with sales of 25m a year, and by then – it says – the auto giants will think twice before investing any more money in the internal combustion engine. Once critical mass is reached, it is not hard to imagine a wholesale shift to electrification in the 2030s.  […]

A team of Cambridge chemists says it has cracked the technology of a lithium-air battery with 90pc efficiency, able to power a car from London to Edinburgh on a single charge. It promises to cut costs by four-fifths, and could be on the road within a decade.

There is now a global race to win the battery prize. The US Department of Energy is funding a project by the universities of Michigan, Stanford, and Chicago, in concert with the Argonne and Lawrence Berkeley national laboratories. The Japan Science and Technology Agency has its own project in Osaka. South Korea and China are mobilising their research centres.

A regulatory squeeze is quickly changing the rules of global energy.The Grantham Institute at the London School of Economics counts 800 policies and laws aimed at curbing emissions worldwide.

Goldman Sachs says the model to watch is Norway, where electric vehicles already command 16.3pc of the market. The switch has been driven by tax exemptions, priority use of traffic lanes, and a forest of charging stations.

California is following suit. It has a mandatory 22pc target for ‘grid-connected’ vehicles within ten years. New cars in China will have to meet emission standards of 5 litres per 100km by 2020, even stricter than in Europe. […]

In the meantime, OPEC revenues have crashed from $1.2 trillion in 2012 to nearer $400bn at today’s Brent price of $36.75, with fiscal and regime pain to match.

This policy has eroded global spare capacity to a wafer-thin 1.5m b/d, leaving the world vulnerable to a future shock. It implies a far more volatile market in which prices gyrate wildly, eroding confidence in oil as a reliable source of energy.

The more that this Saudi policy succeeds, the quicker the world will adopt policies to break reliance on its only product. As internal critics in Riyadh keep grumbling, the strategy is suicide.

Saudi Arabia and the Gulf states are lucky. They have been warned in advance that OPEC faces slow-run off. The cartel has 25 years to prepare for a new order that will require far less oil.

If they have any planning sense, they will manage the market to ensure crude prices of $70 to $80. They will eke out their revenues long enough to control spending and train their people for a post-petrol economy, rather than clinging to 20th Century illusions.

Sheikh Ahmed Zaki Yamani, the former Saudi oil minister, warned in aninterview with the Telegraph fifteen years ago that this moment of reckoning was coming and he specifically cited fuel-cell technologies.

“Thirty years from now there will be a huge amount of oil – and no buyers. Oil will be left in the ground. The Stone Age came to an end, not because we had a lack of stones.”

They did not listen to him then, and they are not listening now.”

See on Scoop.itGreen Energy Technologies & Development

California Resort Hotel First to Upgrade to Energy Storage + EV Charging

Shore Hotel in Santa Monica, California, is a luxury establishment with an energy storage system and fast DC electric vehicle (EV) charging — reportedly, the first one in the US to have this setup. It is expected that the lithium-ion energy storage system will help it reduce electricity demand charges by 50%. Over time, that savings

Source: cleantechnica.com

>” […]  So what is the connection between energy storage and EV charging? When an EV is plugged into a charger, electricity demand increases, so the hotel could be on the hook for a high rate for the electricity, depending on the time of day. Demand charges are based on the highest rate for 15 minutes in a billing cycle. So, obviously, a business would want to avoid spikes in electricity usage so it would not have to pay that rate.

That’s where the energy storage comes in. When there is a spike, electricity can be used from the energy storage system, instead of from a utility’s electricity. Avoiding demand charges in this way, as noted above, can thus help businesses save money. […]”<

See on Scoop.itGreen Energy Technologies & Development

Determining the True Cost (LCOE) of Battery Energy Storage

The true cost of energy storage depends on the so-called LCOE = Round-trip efficiency + maintenance costs + useful life of the energy system

Source: www.triplepundit.com

By Anna W. Aamone

“With regard to [battery] energy storage systems, many people erroneously think that the only cost they should consider is the initial – that is, the cost of generating electricity per kilowatt-hour. However, they are not aware of another very important factor.

This is the so-called LCOE, levelized cost of energy(also known as cost of electricity by source), which helps calculate the price of the electricity generated by a specific source. The LCOE also includes other costs associated with producing or storing that energy, such as maintenance and operating costs, residual value, the useful life of the system and the round-trip efficiency. […]

Batteries and round-trip efficiency

[…] due to poor maintenance, inefficiencies or heat, part of the energy captured in the battery is released … or rather, lost. The idea of round-trip efficiency is to determine the overall efficiency of a system (in that case, batteries) from the moment it is charged to the moment the energy is discharged. In other words, it helps to calculate the amount of energy that gets lost between charging and discharging (a “round trip”).

[…] So, as it turns out, using batteries is not free either. And it has to be added to the final cost of the energy storage system.

Maintenance costs

[…] An energy storage system requires regular check-ups so that it operates properly in the years to come. Note that keeping such a system running smoothly can be quite pricey. Some batteries need to be maintained more often than others. Therefore when considering buying an energy storage system, you need to take into account this factor. […]

Useful life of the energy system

Another important factor in determining the true cost of energy storage is a system’s useful life. Most of the time, this is characterized by the number of years a system is likely to be running. However, when it comes to batteries, there is another factor to take into account: use. […]

More often than not, the life of a battery depends on the number of charge and discharge cycles it goes through. Imagine a battery has about 10,000 charge-discharge cycles. When they are complete, the battery will wear out, no matter if it has been used for two or for five years.

[…] [However] flow batteries can be charged and discharged a million times without wearing out. Hence, cycling is not an issue with this type of battery, and you should keep this in mind before selecting an energy storage system. Think twice about whether you want to use batteries that wear out too quickly because their useful life depends on the number of times they are charged and discharged. Or would you rather use flow batteries, the LCOE of which is much lower than that of standard batteries?

So, what do we have so far?

LCOE = Round-trip efficiency + maintenance costs + useful life of the energy system.

These are three of the most important factors that determine the LCOE. Make sure you consider all the factors that determine the true cost of energy storage systems before you buy one.

Image credit: Flickr/INL”

See on Scoop.itGreen Energy Technologies & Development

Why Electric Vehicles are not 100% Green

In 2013 Tesla’s [time-stock symbol=TSLA] Model S won the prestigious Motor Trend Car of the Year award. Motor Trend called it “one of the quickest American four-doors ever built.” It went on to say that the electric vehicle “drives like a sports car, eager and agile and instantly responsive.”

Source: time.com

>” […]

The secret behind Tesla’s success

While the power driving Tesla’s success might be its battery, that’s not the real secret to its success. Instead, Tesla has aluminum to thank for its superior outperformance, as the metal is up to 40% lighter than steel, according to a report from the University of Aachen, Germany. That lighter weight enables Tesla to fit enough battery power into the car to extend the range of the Model S without hurting its performance. Vehicles made with aluminum accelerate faster, brake in shorter distances, and simply handle better than cars loaded down with heavier steel.

Even better, pound-for-pound aluminum can absorb twice as much crash energy as steel. This strength is one of the reasons Tesla’s Model S also achieved the highest safety rating of any car ever tested by the National Highway Traffic Safety Administration.

But it’s not all good news when it comes to aluminum and cars.

Aluminum’s dirty side

[…]  Before alumina can be converted into aluminum its source needs to be mined. That source is an ore called bauxite, which is typically extracted in open-pit mines that aren’t exactly environmentally friendly. Bauxite is then processed into the fine white powder known as alumina, and from there alumina is exposed to intense heat and electricity through a process known as smelting, which transforms the material into aluminum.

Aluminum smelting is extremely energy-intense. It takes 211 gigajoules of energy to make one tonne of aluminum, while just 22.7 gigajoules of energy is required to produce one tonne of steel. In an oversimplification of the process, aluminum smelting requires temperatures above 1,000 degrees Celsius to melt alumina, while an electric current must also pass through the molten material so that electrolysis can reduce the aluminum ions to aluminum metals. This process requires so much energy that aluminum production is responsible for about 1% of global greenhouse gas emissions, according to the Carbon Trust.

There is, however, some good news: Aluminum is 100% recyclable. Moreover, recycled aluminum, or secondary production, requires far less energy to produce than primary production, as the […] chart shows. […]”<

 

See on Scoop.itGreen Energy Technologies & Development