Aluminum, a Quantum Leap in Renewable Energy Storage

The future for the metal aluminum has never looked better, for the great investment it represents as a multi-faceted energy efficiency lending material, electrical energy storage medium (battery), and for the advancement of renewable energy sources.  These are spectacular claims, and yet in 1855 aluminum was so scarce it sold for about 1200 $/Kg (1) until metallurgists Hall & Heroult invented the modern smelting process over 100 years ago (2).

Image result for aluminum electrolysis

Figure 1.  Schematic of Hall Heroult Aluminum Reduction Cell (3)

 

Aluminum is an energy intensive production process.  High temperatures are required to melt aluminum to the molten state.  Carbon electrodes are used to melt an alchemical mixture of alumina with molten cryolite, a naturally occurring mineral.  The cryolite acts as an electrolyte to the carbon anode and cathodes.  Alumina (Al2O3) also known as aluminum oxide or Bauxite is fed into the cell and dissolved into the cryolite, over-voltages reduce the Al2O3 into molten aluminum which pools at the bottom of the cell and is tapped out for further refining.

Aluminum Smelting Process as a Battery

The smelting of Aluminum is a reversible electrolytic reaction, and with modifications to current plant design it is possible to convert the process to provide energy storage which can  be tapped and supplied to the electrical grid when required.  According to the research the biggest challenge to this conversion process is to maintain heat balances of the pots when discharging energy to prevent freeze-up of the cells.  Trimet Aluminum has overcome this problem by incorporating shell heat-exchange technology to the sides of the cell to maintain operating temperatures.  Trial runs with this technology have been positive where plans are to push the technology to +/- 25% energy input/output.  If this technology is applied to all 3 Trimet plants in Germany, it is claimed that up to 7700 MWh of electrical storage is possible (4).

Trimet Aluminum SE, Germany’s largest producer of the metal, is experimenting with using vast pools of molten aluminum as virtual batteries. The company is turning aluminum oxide into aluminum by way of electrolysis in a chemical process that uses an electric current to separate the aluminum from oxygen. The negative and positive electrodes, in combination with the liquid metal that settles at the bottom of the tank and the oxygen above, form an enormous battery.

By controlling the rate of electrolysis, Trimet has been able to experiment with both electricity consumption and storage.  By slowing down the electrolysis process, the plant is able to adjust its energy consumption up and down by roughly 25 percent.  This allows the plant to store power from the grid when energy is cheap and abundant and resell power when demand is high and supply is scarce. (5)

Related image

Figure 2. TRIMET Aluminium SE Hamburg with emission control technology (6)

 

Image result

Figure 3.  Rio Tinto Alcan inaugurates new AP60 aluminum smelter in Quebec (7)

Aluminum as a Material and it’s Energy Efficiency Properties

Aluminum and it’s alloys generally have high strength-to-weight ratio’s and are often specified in the aircraft industry where weight reduction is critical.  A plane made of steel would require more energy to fly,  as the metal is heavier for a given strength.  For marine vessels, an aluminum hull structure, built to the same standards, weighs roughly 35% to 45% less than the same hull in steel (8). Weight reduction directly converts to energy savings as more energy would be required to propel the aircraft.

Other modes of transportation, including automobiles, trucking, and rail transport may similarly also benefit from being constructed of lighter materials, such as aluminum.  Indeed this would continue the long-standing trend of weight reduction in the design of vehicles.  The recent emergence of electric vehicles (EV’s) have required weight reduction to offset the high weight of batteries which are necessary for their operations.  The weight reduction translates into longer range and better handling.

Image result

Figure 4.  Tesla Model S (9)

 

In the 1960s, aluminium was used in the niche market for cog railways. Then, in the 1980s, aluminium emerged as the metal of choice for suburban transportation and high-speed trains, which benefited from lower running costs and improved acceleration. In 1996, the TGV Duplex train was introduced, combining the concept of high speed with that of optimal capacity, transporting 40% more passengers while weighing 12% less than the single deck version, all thanks to its aluminium structure.

Today, aluminium metros and trams operate in many countries. Canada’s LRC, France’s TGV Duplex trains and Japan’s Hikari Rail Star, the newest version of the Shinkansen Bullet train, all utilize large amounts of aluminium.  (10)

Image result

Figure 5.   Image of Japanese Bullet Train  (11)

Aluminum For Renewable Energy

One of the biggest criticisms against renewable technologies, such as solar and wind has been that they are intermittent, and not always available when demand demand for energy is high.  Even in traditional grid type fossil fuel plants it has been necessary to operate “peaker plants” which provide energy during peak times and seasons.

In California, recent technological breakthroughs in battery technology have been seen as a means of providing storage options to replace power plants for peak operation. However, there remains skepticism that battery solutions will be able to provide the necessary storage capacity needed during these times (12).  The aluminum smelter as an energy provider during these high demand times may be the optimum solution needed in a new age renewables economy.

The EnPot technology has the potential to make the aluminium smelting industry not only more competitive, but also more responsive to the wider community and environment around it, especially as nations try to increase the percentage of power generated from renewable sources.

The flexibility EnPot offers smelter operators can allow the aluminium industry to be part of the solution of accommodating increased intermittency.  (13)

References:

(1)  http://www.aluminum-production.com/aluminum_history.html

(2)  http://www.aluminum-production.com/Basic_functioning.html

(3)  http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0103-50532000000300008

(4)  The ‘Virtual Battery‘ – Operating an Aluminium Smelter with Flexible Energy Input.  https://energiapotior.squarespace.com/s/Enpot-Trimet-LightMetals2016.pdf

(5)  http://www.metalsproclimate.com/metals-pro-climate/best-practice/reduction-of-pfc-process-emissions

(6) http://www.sauder.ubc.ca/Faculty/Research_Centres/Centre_for_Social_Innovation_and_Impact_Investing/Programs/Clean_Capital/Clean_Capital_News_Archive_2014/Aluminum_smelters_could_act_as_enormous_batteries

(7)  http://www.canadianmetalworking.com/2014/01/rio-tinto-alcan-inaugurates-new-ap60-aluminum-smelter-in-quebec/

(8)  http://www.kastenmarine.com/alumVSsteel.htm

(9)  http://www.greencarreports.com/news/1077672_2012-tesla-model-s-is-aluminum-its-secret-weapon

(10)  http://transport.world-aluminium.org/en/modes/trainssubways.html

(11)  http://www.aluminiumleader.com/focus/aluminium_carriages_help_provide_high_speed_rail_service/

(12)  http://www.bloomberg.com/news/articles/2015-12-22/batteries-gaining-favor-over-gas-peaker-plants-in-california

(13)  http://www.energiapotior.com/the-virtual-battery

The End of Oil Domination? – German Government Votes to Ban Sales of ICE Vehicles by 2030

aid_diesel-2

Figure 1:  Chart showing recent drop in Diesel Car sales, AID Newsletter

 

“[…] Germany’s Bundesrat has passed a resolution to ban the internal combustion engine starting in 2030,Germany’s Spiegel Magazin writes. Higher taxes may hasten the ICE’s departure.

An across-the-aisle Bundesrat resolution calls on the EU Commission in Brussels to pass directives assuring that “latest in 2030, only zero-emission passenger vehicles will be approved” for use on EU roads. Germany’s Bundesrat is a legislative body representing the sixteen states of Germany. On its own, the resolution has no legislative effect. EU type approval is regulated on the EU level. However, German regulations traditionally have shaped EU and UNECE regulations.

EU automakers will be alarmed that the resolution, as quoted by der Spiegel, calls on the EU Commission to “review the current practices of taxation and dues with regard to a stimulation of emission-free mobility.”

  • “Stimulation of emission-free mobility” can mean incentives to buy EVs. Lavish subsidies doled out by EU states have barely moved the needle so far.
  • A “review the current practices of taxation and dues” is an unambiguously broad hint to end the tax advantages enjoyed by diesel in many EU member states. The lower price of diesel fuel, paired with its higher mileage per liter, are the reason that half of the cars on Europe’s roads are diesel-driven. Higher taxes would fuel diesel’s demise. […]

With diesel already on its tipping point in Europe, higher taxes and increased prices at the pump would be the beginning of the fuel’s end. As evidenced at the Paris auto show, the EU auto industry seems to be ready to switch to electric power, and politicians just signaled their willingness to force the switch to zero-emission, if necessary. Environmentalists undoubtedly will applaud this move, and the sooner diesel is stopped from poisoning our lungs with cancer-causing nitrous oxide, the better. Cult-like supporters of electric carmaker Tesla will register the developments with trepidation.

When EU carmakers are forced by law to produce the 13+ million electric cars the region would need per year, the upstart carmaker would lose its USP, and end up as roadkill. Maybe even earlier. Prompted by a recent accident on a German Autobahn, experts of Germany’s transport ministry declared Tesla’s autopilot a “considerable traffic hazard,” Der Spiegel wrote yesterday.Transport Minister Dobrindt so far stands between removing Germany’s 3,000 Tesla cars from the road, the magazine writes. Actually, until the report surfaced, the minister’s plan was to subsidize Autopilot research in Germany’s inner cities. “Let’s hope no Tesla accident happens,” the minister’s bureaucrats told Der Spiegel. It happened, but no-one died.”

Via Forbes:  http://bit.ly/2e8HSQf

 

Electric Vehicles Future Threatens OPEC

The oil cartel is living in a time-warp, seemingly unaware that global energy politics have changed forever

Sourced through Scoop.it from: www.telegraph.co.uk

“…OPEC says battery costs may fall by 30-50pc over the next quarter century but doubts that this will be enough to make much difference, due to “consumer resistance”.

This is a brave call given that Apple and Google have thrown their vast resources into the race for plug-in vehicles, and Tesla’s Model 3s will be on the market by 2017 for around $35,000.

Ford has just announced that it will invest $4.5bn in electric and hybrid cars, with 13 models for sale by 2020. Volkswagen is to unveil its “completely new concept car” next month, promising a new era of “affordable long-distance electromobility.”

The OPEC report is equally dismissive of Toyota’s decision to bet its future on hydrogen fuel cars, starting with the Mirai as a loss-leader. One should have thought that a decision by the world’s biggest car company to end all production of petrol and diesel cars by 2050 might be a wake-up call.

Goldman Sachs expects ‘grid-connected vehicles’ to capture 22pc of the global market within a decade, with sales of 25m a year, and by then – it says – the auto giants will think twice before investing any more money in the internal combustion engine. Once critical mass is reached, it is not hard to imagine a wholesale shift to electrification in the 2030s.  […]

A team of Cambridge chemists says it has cracked the technology of a lithium-air battery with 90pc efficiency, able to power a car from London to Edinburgh on a single charge. It promises to cut costs by four-fifths, and could be on the road within a decade.

There is now a global race to win the battery prize. The US Department of Energy is funding a project by the universities of Michigan, Stanford, and Chicago, in concert with the Argonne and Lawrence Berkeley national laboratories. The Japan Science and Technology Agency has its own project in Osaka. South Korea and China are mobilising their research centres.

A regulatory squeeze is quickly changing the rules of global energy.The Grantham Institute at the London School of Economics counts 800 policies and laws aimed at curbing emissions worldwide.

Goldman Sachs says the model to watch is Norway, where electric vehicles already command 16.3pc of the market. The switch has been driven by tax exemptions, priority use of traffic lanes, and a forest of charging stations.

California is following suit. It has a mandatory 22pc target for ‘grid-connected’ vehicles within ten years. New cars in China will have to meet emission standards of 5 litres per 100km by 2020, even stricter than in Europe. […]

In the meantime, OPEC revenues have crashed from $1.2 trillion in 2012 to nearer $400bn at today’s Brent price of $36.75, with fiscal and regime pain to match.

This policy has eroded global spare capacity to a wafer-thin 1.5m b/d, leaving the world vulnerable to a future shock. It implies a far more volatile market in which prices gyrate wildly, eroding confidence in oil as a reliable source of energy.

The more that this Saudi policy succeeds, the quicker the world will adopt policies to break reliance on its only product. As internal critics in Riyadh keep grumbling, the strategy is suicide.

Saudi Arabia and the Gulf states are lucky. They have been warned in advance that OPEC faces slow-run off. The cartel has 25 years to prepare for a new order that will require far less oil.

If they have any planning sense, they will manage the market to ensure crude prices of $70 to $80. They will eke out their revenues long enough to control spending and train their people for a post-petrol economy, rather than clinging to 20th Century illusions.

Sheikh Ahmed Zaki Yamani, the former Saudi oil minister, warned in aninterview with the Telegraph fifteen years ago that this moment of reckoning was coming and he specifically cited fuel-cell technologies.

“Thirty years from now there will be a huge amount of oil – and no buyers. Oil will be left in the ground. The Stone Age came to an end, not because we had a lack of stones.”

They did not listen to him then, and they are not listening now.”

See on Scoop.itGreen Energy Technologies & Development

California Resort Hotel First to Upgrade to Energy Storage + EV Charging

Shore Hotel in Santa Monica, California, is a luxury establishment with an energy storage system and fast DC electric vehicle (EV) charging — reportedly, the first one in the US to have this setup. It is expected that the lithium-ion energy storage system will help it reduce electricity demand charges by 50%. Over time, that savings

Source: cleantechnica.com

>” […]  So what is the connection between energy storage and EV charging? When an EV is plugged into a charger, electricity demand increases, so the hotel could be on the hook for a high rate for the electricity, depending on the time of day. Demand charges are based on the highest rate for 15 minutes in a billing cycle. So, obviously, a business would want to avoid spikes in electricity usage so it would not have to pay that rate.

That’s where the energy storage comes in. When there is a spike, electricity can be used from the energy storage system, instead of from a utility’s electricity. Avoiding demand charges in this way, as noted above, can thus help businesses save money. […]”<

See on Scoop.itGreen Energy Technologies & Development

Determining the True Cost (LCOE) of Battery Energy Storage

The true cost of energy storage depends on the so-called LCOE = Round-trip efficiency + maintenance costs + useful life of the energy system

Source: www.triplepundit.com

By Anna W. Aamone

“With regard to [battery] energy storage systems, many people erroneously think that the only cost they should consider is the initial – that is, the cost of generating electricity per kilowatt-hour. However, they are not aware of another very important factor.

This is the so-called LCOE, levelized cost of energy(also known as cost of electricity by source), which helps calculate the price of the electricity generated by a specific source. The LCOE also includes other costs associated with producing or storing that energy, such as maintenance and operating costs, residual value, the useful life of the system and the round-trip efficiency. […]

Batteries and round-trip efficiency

[…] due to poor maintenance, inefficiencies or heat, part of the energy captured in the battery is released … or rather, lost. The idea of round-trip efficiency is to determine the overall efficiency of a system (in that case, batteries) from the moment it is charged to the moment the energy is discharged. In other words, it helps to calculate the amount of energy that gets lost between charging and discharging (a “round trip”).

[…] So, as it turns out, using batteries is not free either. And it has to be added to the final cost of the energy storage system.

Maintenance costs

[…] An energy storage system requires regular check-ups so that it operates properly in the years to come. Note that keeping such a system running smoothly can be quite pricey. Some batteries need to be maintained more often than others. Therefore when considering buying an energy storage system, you need to take into account this factor. […]

Useful life of the energy system

Another important factor in determining the true cost of energy storage is a system’s useful life. Most of the time, this is characterized by the number of years a system is likely to be running. However, when it comes to batteries, there is another factor to take into account: use. […]

More often than not, the life of a battery depends on the number of charge and discharge cycles it goes through. Imagine a battery has about 10,000 charge-discharge cycles. When they are complete, the battery will wear out, no matter if it has been used for two or for five years.

[…] [However] flow batteries can be charged and discharged a million times without wearing out. Hence, cycling is not an issue with this type of battery, and you should keep this in mind before selecting an energy storage system. Think twice about whether you want to use batteries that wear out too quickly because their useful life depends on the number of times they are charged and discharged. Or would you rather use flow batteries, the LCOE of which is much lower than that of standard batteries?

So, what do we have so far?

LCOE = Round-trip efficiency + maintenance costs + useful life of the energy system.

These are three of the most important factors that determine the LCOE. Make sure you consider all the factors that determine the true cost of energy storage systems before you buy one.

Image credit: Flickr/INL”

See on Scoop.itGreen Energy Technologies & Development

Why Electric Vehicles are not 100% Green

In 2013 Tesla’s [time-stock symbol=TSLA] Model S won the prestigious Motor Trend Car of the Year award. Motor Trend called it “one of the quickest American four-doors ever built.” It went on to say that the electric vehicle “drives like a sports car, eager and agile and instantly responsive.”

Source: time.com

>” […]

The secret behind Tesla’s success

While the power driving Tesla’s success might be its battery, that’s not the real secret to its success. Instead, Tesla has aluminum to thank for its superior outperformance, as the metal is up to 40% lighter than steel, according to a report from the University of Aachen, Germany. That lighter weight enables Tesla to fit enough battery power into the car to extend the range of the Model S without hurting its performance. Vehicles made with aluminum accelerate faster, brake in shorter distances, and simply handle better than cars loaded down with heavier steel.

Even better, pound-for-pound aluminum can absorb twice as much crash energy as steel. This strength is one of the reasons Tesla’s Model S also achieved the highest safety rating of any car ever tested by the National Highway Traffic Safety Administration.

But it’s not all good news when it comes to aluminum and cars.

Aluminum’s dirty side

[…]  Before alumina can be converted into aluminum its source needs to be mined. That source is an ore called bauxite, which is typically extracted in open-pit mines that aren’t exactly environmentally friendly. Bauxite is then processed into the fine white powder known as alumina, and from there alumina is exposed to intense heat and electricity through a process known as smelting, which transforms the material into aluminum.

Aluminum smelting is extremely energy-intense. It takes 211 gigajoules of energy to make one tonne of aluminum, while just 22.7 gigajoules of energy is required to produce one tonne of steel. In an oversimplification of the process, aluminum smelting requires temperatures above 1,000 degrees Celsius to melt alumina, while an electric current must also pass through the molten material so that electrolysis can reduce the aluminum ions to aluminum metals. This process requires so much energy that aluminum production is responsible for about 1% of global greenhouse gas emissions, according to the Carbon Trust.

There is, however, some good news: Aluminum is 100% recyclable. Moreover, recycled aluminum, or secondary production, requires far less energy to produce than primary production, as the […] chart shows. […]”<

 

See on Scoop.itGreen Energy Technologies & Development

Electric Vehicle Market – Nissan Tests “Demand Response” Energy Management System

Nissan is assessing the potential of electric vehicles in energy management systems. […]  is participating in the “demand response” energy supply and demand system testing together with businesses and government authorities in Japan.

Source: green.autoblog.com

>”[…]  Demand response is a strategy to make power grids more efficient by modifying consumers’ power consumption in consideration of available energy supply. Since the Great East Japan Earthquake in March 2011 the supply and demand of electricity during peak use hours in Japan has drawn attention. Under the demand response scheme, power companies request aggregators* to use energy conservation measures, and they are compensated for the electricity that they save.

Usually when energy-saving is requested consumers may respond by moderating their use of air conditioning and lighting. However, by using the storage capacity of electric vehicles and Vehicle to Home (V2H) systems, consumers can reduce their use of power at peak times without turning off lights and appliances. This is particularly useful in commercial establishments where it is difficult to turn power off to save electricity.

The demand response scheme involves assessing the usefulness of energy-saving measures using V2H systems during peak-use periods and analyzing the impact of monetary incentives on business. For example, the testing involves a LEAF and LEAF to Home system which is connected to power a Nissan dealer’s lighting system during regular business hours using stored battery energy. This reduces electricity demand on the power grid. The aggregator is then compensated for the equivalent of the total amount of electricity that is saved. Two or three tests per month will be conducted on designated days for three hours’ each time sometime between 8:00 a.m. to 8:00 p.m. from October 2014 through January 2015.

Effective use of renewable energy and improvements in the efficiency of power generation facilities will enable better energy management in the future and help reduce environmental impact. Field tests using EVs’ high-capacity batteries that are being conducted globally are proving their effectiveness in energy management. Additionally, if similar compensation schemes for energy-saving activities were applied to EV owners it could accelerate the wider adoption of EVs and reduce society’s carbon footprint.

Nissan has sold more than 142,000 LEAFs globally since launch. The Nissan LEAF’s power storage capability in its onboard batteries, coupled with the LEAF to Home power supply system, is proving attractive to many customers. As the leader in Zero Emissions, Nissan is promoting the adoption of EVs to help build a zero-emission society in the future. Along with these energy management field tests, Nissan is actively creating new value through the use of EVs’ battery power storage capability and continuing to promote initiatives that will help realize a sustainable low-carbon society.

* Aggregators refers to businesses that coordinate two or more consumers (e.g. plants and offices) and trade with utility companies the total amount of the electricity they have succeeded in curbing.”<

See on Scoop.itGreen Energy Technologies & Development