Wind Turbines

rotronicuk's avatarRotronic - BLOG

Its been pretty windy recently, So wind farms are probably doing quite well at the moment. The biggest wind farm in the world, at the moment, is the London array, which can produce 630MW of power.

Wind Energy in General

The future is very encouraging for wind power. The technology is growing exponentially due to the current power crisis and the ongoing discussions about nuclear power plants. Wind turbines are becoming more efficient and are able to produce increased electricity capacity given the same factors.

Facts & figures:

There is over 200 GW (Giga Watts) of installed wind energy capacity in the world.

The Global Wind Energy Council (GWEC) has forecasted a global capacity of 2,300 GW by 2030. This will cover up to 22% of the global power consumption.

WindPower
Converting wind power into electrical power:

A wind turbine converts the kinetic energy of wind into rotational mechanical energy. This energy is directly converted, by a generator, into electrical energy. Large wind turbines typically have a generator installed on top of the tower. Commonly, there…

View original post 489 more words

Amager Resource Center Copenhagen, Designed by Bjarke Ingels Group (BIG)

The waste-to-energy plant in Copenhagen was selected as a citation winner in the 62nd Annual Progressive Architecture Awards.

Source: www.architectmagazine.com

“BIG won the competition for the 1.02 million-square-foot Amager Resource Center with this widely touted scheme, which promises to turn a waste-to-energy plant into a popular attraction. By integrating a ski slope into the roof and a rock-climbing wall up one face, the architects build upon the project’s location: a part of Copenhagen on the island of Amager that has become a destination for extreme sports enthusiasts, thanks to its parks, beaches, dunes, and a lagoon for kayaking and windsurfing.  At 100 meters tall, the center will be one of the city’s tallest landmarks when completed—and a striking example of building-as-landscape. Indeed, the client has taken to calling it the Amager Bakke, or Amager Hill.”

See on Scoop.itGreen Building Design – Architecture & Engineering

Determining the True Cost (LCOE) of Battery Energy Storage

The true cost of energy storage depends on the so-called LCOE = Round-trip efficiency + maintenance costs + useful life of the energy system

Source: www.triplepundit.com

By Anna W. Aamone

“With regard to [battery] energy storage systems, many people erroneously think that the only cost they should consider is the initial – that is, the cost of generating electricity per kilowatt-hour. However, they are not aware of another very important factor.

This is the so-called LCOE, levelized cost of energy(also known as cost of electricity by source), which helps calculate the price of the electricity generated by a specific source. The LCOE also includes other costs associated with producing or storing that energy, such as maintenance and operating costs, residual value, the useful life of the system and the round-trip efficiency. […]

Batteries and round-trip efficiency

[…] due to poor maintenance, inefficiencies or heat, part of the energy captured in the battery is released … or rather, lost. The idea of round-trip efficiency is to determine the overall efficiency of a system (in that case, batteries) from the moment it is charged to the moment the energy is discharged. In other words, it helps to calculate the amount of energy that gets lost between charging and discharging (a “round trip”).

[…] So, as it turns out, using batteries is not free either. And it has to be added to the final cost of the energy storage system.

Maintenance costs

[…] An energy storage system requires regular check-ups so that it operates properly in the years to come. Note that keeping such a system running smoothly can be quite pricey. Some batteries need to be maintained more often than others. Therefore when considering buying an energy storage system, you need to take into account this factor. […]

Useful life of the energy system

Another important factor in determining the true cost of energy storage is a system’s useful life. Most of the time, this is characterized by the number of years a system is likely to be running. However, when it comes to batteries, there is another factor to take into account: use. […]

More often than not, the life of a battery depends on the number of charge and discharge cycles it goes through. Imagine a battery has about 10,000 charge-discharge cycles. When they are complete, the battery will wear out, no matter if it has been used for two or for five years.

[…] [However] flow batteries can be charged and discharged a million times without wearing out. Hence, cycling is not an issue with this type of battery, and you should keep this in mind before selecting an energy storage system. Think twice about whether you want to use batteries that wear out too quickly because their useful life depends on the number of times they are charged and discharged. Or would you rather use flow batteries, the LCOE of which is much lower than that of standard batteries?

So, what do we have so far?

LCOE = Round-trip efficiency + maintenance costs + useful life of the energy system.

These are three of the most important factors that determine the LCOE. Make sure you consider all the factors that determine the true cost of energy storage systems before you buy one.

Image credit: Flickr/INL”

See on Scoop.itGreen Energy Technologies & Development

What is “Levelized Cost of Energy” or LCOE?

As a financial tool, LCOE is very valuable for the comparison of various generation options. A relatively low LCOE means that electricity is being produced at a low cost, with higher likely returns for the investor. If the cost for a renewable technology is as low as current traditional costs, it is said to have reached “Grid Parity“.

Source: www.renewable-energy-advisors.com

>”LCOE (levelized cost of energy) is one of the utility industry’s primary metrics for the cost of electricity produced by a generator. It is calculated by accounting for all of a system’s expected lifetime costs (including construction, financing, fuel, maintenance, taxes, insurance and incentives), which are then divided by the system’s lifetime expected power output (kWh). All cost and benefit estimates are adjusted for inflation and discounted to account for the time-value of money. […]

LCOE Estimates for Renewable Energy

When an electric utility plans for a conventional plant, it must consider the effects of inflation on future plant maintenance, and it must estimate the price of fuel for the plant decades into the future. As those costs rise, they are passed on to the ratepayer. A renewable energy plant is initially more expensive to build, but has very low maintenance costs, and no fuel cost, over its 20-30 year life. As the following 2012 U.S. Govt. forecast illustrates, LCOE estimates for conventional sources of power depend on very uncertain fuel cost estimates. These uncertainties must be factored into LCOE comparisons between different technologies.

LCOE estimates may or may not include the environmental costs associated with energy production. Governments around the world have begun to quantify these costs by developing various financial instruments that are granted to those who generate or purchase renewable energy. In the United States, these instruments are called Renewable Energy Certificates (RECs). To learn more about environmental costs, visit our Greenhouse Gas page.

LCOE estimates do not normally include less tangible risks that may have very large effects on a power plant’s actual cost to ratepayers. Imagine, for example, the LCOE estimates used for nuclear power plants in Japan before the Fukushima incident, compared to the eventual costs for those plants.

Location

An important determination of photovoltaic LCOE is the system’s location. The LCOE of a system built in Southern Utah, for example, is likely to be lower than that of an identical system built in Northern Utah. Although the cost of building the two systems may be similar, the system with the most access to the sun will perform better, and deliver the most value to its owner. […]”<

 

 

See on Scoop.itGreen Energy Technologies & Development

Concentrated Solar Power Projects in 2014

“It was a good year for solar power in the USA, with over six gigawatts of photovoltaic (PV) capacity and more than one gigawatt of concentrated solar power (CSP) being added in 2014, bringing the nation’s total solar power capacity to more than 17 gigawatts. That’s a 41% increase in solar power capacity in just one year…”  Source: www.engineering.com

>” Photovoltaic vs Concentrated Solar Power

Photovoltaic technology converts light directly into electricity. PV panels produce DC, which needs to be converted to AC before being placed on the grid. PV panels work best in direct sunlight when they’re pointed perpendicular to the sun’s rays, but they also work reasonably well in diffuse light, even when not pointed directly at the sun. This makes them inexpensive and suitable for rooftops, since solar tracking isn’t required. PV also works in climates that aren’t particularly sunny; Germany gets less sunlight than the northern US, and yet it has a large portion of its power generated by PV.

Concentrated solar power, on the other hand, requires direct sunlight and solar tracking. CSP focuses the sun’s energy and uses the resulting heat to create steam that drives a traditional turbine generator. Even better, the heat can be stored – usually in the form of molten salts – so the CSP plant can generate electricity even when the sun isn’t shining. Because CSP relies on direct sunlight, it’s most suitable for very sunny locations like the American southwest.  […]

US Concentrated Solar Power in 2014

These five major CSP plants went online in 2014 (give or take a few months – one went live in late 2013):

Gila Bend, AZ is the home of the Solana parabolic trough power plant, which provides 250 MW of power to residents of Arizona. The turbine It went live in October of 2013. Spanning 1920 acres, the solar farm includes over two million square meters of reflective troughs and two tanks of molten salts, which provide up to six hours of thermal energy storage. If the stored energy is depleted and the sun isn’t shining, the turbine can be powered by natural gas as a backup.

The Genesis power plant in Blythe CA generates 250 MW of power using a parabolic trough array consisting of more than half a million mirrors. Unlike the Solana plant, Genesis includes no storage or backup fuel. Brought online in April of 2014, designers expect it to generate about 600 GWh of energy each year.

Probably the most famous CSP plant in the US, and the largest of its kind in the world, is the Ivanpah Solar Electric Generating System in Ivanpah Dry Lake CA, about 50 miles south of Las Vegas NV. Its three power towers fired up in February 2014, and the facility now produces 377 MW of power. Its annual production is expected to exceed one terawatt-hour. Ivanpah includes natural gas as its backup, but has no on-site storage.

About 270 miles northwest of Ivanpah is the Crescent Dunes Solar Energy Project in Tonopah, NV. Originally planned to go online in late 2014, the start date has been pushed back to January of 2015. When operational, this 110 MW power tower should produce nearly 500 GWh per year. Crescent Dunes uses molten salt to store heat, allowing it to generate power for ten hours without sunlight.

The Mojave Solar One facility came online in late 2014 and now generates 250 MW of electricity. Located about 100 miles northeast of Los Angeles CA, this parabolic trough array feeds a pair of 125 MW steam turbine generators. The plant should produce about 600 GWh per year. […]”<

 

 

See on Scoop.itGreen Energy Technologies & Development

Morgan Stanley Installs Bloom Energy Fuel Cells At Purchase, NY Facility

Morgan Stanley Installs Bloom Energy Fuel Cells At Purchase, NY Facility

Source: www.bloomenergy.com

“The project will provide clean and uninterruptible power for the 750,000 Sq. Ft. Office Building

PURCHASE, NY, Nov. 14 — […] The fuel cell system, along with a solar panel field completed earlier this year, are the latest in a series of initiatives to improve the facility’s energy efficiency and resiliency.

The Bloom Energy fuel cell system produces electricity without burning fossil fuels, thus reducing emission of greenhouse gases. It will supply approximately 250 kilowatts (kW) of constant base load power to the facility, as well as grid-independent electricity to power portions of the building’s critical load during grid outages.  […]

The new solid oxide fuel cell system (SOFC) technology converts fuel into electricity through a highly efficient electrochemical process, resulting in on-site, clean and reliable power. Combined with the solar field, these new installations are expected to produce approximately 3 million kilowatt hours (kWh) of energy a year. During peak energy consumption times, they can supply approximately one megawatt, or up to 30 percent of the building’s demand.

Support for this project was provided by the New York State Energy Research and Development Authority (NYSERDA). Founded in 1975, NYSERDA is a public benefit corporation that provides information, services, programs and funding to help New Yorkers increase energy efficiency, save money, use renewable energy and reduce reliance on fossil fuels.

About Bloom Energy

Bloom Energy is a provider of breakthrough solid oxide fuel cell technology generating clean, highly-efficient on-site power from multiple fuel sources. The company was founded in 2001 with a mission to make clean, reliable energy affordable for everyone in the world. Bloom Energy Servers are currently producing power for several Fortune 500 companies including Apple, Google, Walmart, AT&T, eBay, Staples, The Coca-Cola Company, as well as notable non-profit organizations such as Caltech and Kaiser Permanente. The company is headquartered in Sunnyvale, CA. For more information, visit www.bloomenergy.com.

About Morgan Stanley

Morgan Stanley (NYSE: MS) is a leading global financial services firm providing investment banking, securities, investment management and wealth management services.  […]”<

 

See on Scoop.itGreen Energy Technologies & Development

Bloom Box: The Alternative Energy Fuel Cell Technology – 60 Minutes

https://youtube.com/watch?v=shkFDPI6kGE%3Ffs%3D1%26hl%3Dfr_FR

“Derived from a common sand-like powder, and leveraging breakthrough advances in materials science, our technology is able to produce clean, reliable, affordable power,… practically anywhere,… from a wide range of renewable or traditional fuels.”

Source: www.youtube.com

Changing the Face of Energy

Bloom Energy is changing the way the world generates and consumes energy.

Our unique on-site power generation systems utilize an innovative new fuel cell technology with roots in NASA’s Mars program.  […]

Our Energy Servers® are among the most efficient energy generators on the planet; providing for significantly reduced electricity costs and dramatically lower greenhouse gas emissions.

By generating power on-site, where it is consumed, Bloom Energy offers increased electrical reliability and improved energy security, providing a clear path to energy independence.

Founded in 2001, Bloom Energy is headquartered in Sunnyvale, California.”
http://www.bloomenergy.com/about/&nbsp;

See on Scoop.itGreen Energy Technologies & Development

Chile’s Mines Run on Renewables

Chilean mines are more and more run on renewable energy, which will soon be bigger than conventional energy in Chile. Thanks to China, writes John Mathews.

Source: www.energypost.eu

>” […] Miners in Chile are building independent solar, solar thermal, wind and geothermal power plants that produce power at costs competitive with or lower than conventional fuel supplies or grid-connected electric power.

Consider these facts.

The Cerro Dominador concentrated solar power (CSP) plant (see here for an explanation of the different solar technologies), rated at 110 megawatts, will supply regular uninterrupted power to the Antofagasta Minerals complex in the dry north of Chile, in the Atacama desert. Construction began in 2014. This is one of the largest CSP plants in the world, utilising an array of mirrors and lenses to concentrate the sun’s rays onto a power tower, and utilising thermal storage in the form of molten salts, perfected by Spanish company Abengoa. It will supply steady, dispatchable power, day and night.

The El Arrayán wind power project, rated at 115 megawatts, now supplies power to the Los Pelambres mine of Antofagasta Minerals, using Pattern Energy (US) as technology partner. Antofagasta Minerals has also contracted with US solar company SunEdison to build solar panel arrays at the Los Pelambres mine, with a power plant rated at 70 megawatts; while the related plant operated by Amenecer Solar CAP is rated at 100 megawatts, the largest such array in Latin America when it came online in 2014.

There are many more such projects under review or in the pipeline. The Chilean Renewable Energy Center reported in 2014 that the pipeline of renewable power projects in Chile added up to 18,000 megawatts (or 18 gigawatts), which is more than the country’s entire current electric power grid. […]”<

 

See on Scoop.itGreen & Sustainable News

Mega-Project – BC’s Peace River Site C Dam to Break Ground Next Summer

“Clark said that it’s unknown how much the project will add to BC Hydro customers’ bills, but that the cabinet reached the decision after careful analysis and much discussion.”

Source: thetyee.ca

>” […] British Columbia plans to start construction of the $8.8-billion Site C dam on the Peace River next summer, Premier Christy Clark said today in a controversial announcement that was welcomed by some and panned by others.

“Once it is built, it is going to benefit British Columbians for generations, and that is why we have decided to go ahead with the Site C clean energy project,” Clark said at a press conference at the provincial legislature.

Clark said that it’s unknown how much the project will add to BC Hydro customers’ bills, but that the cabinet reached the decision after careful analysis and much discussion.

Site C was the most affordable, reliable and sustainable option available to meet B.C.’s growing power needs, she said. Over the next 20 years, the government is estimating that demand for energy will increase by 40 per cent as both the population and industry grows. Roughly one-third of that power is expected for residential use.

First proposed some 30 years ago, Site C will be the third of a series of dams on the Peace River and will flood an 83-kilometre long stretch of the river to generate 1,100 megawatt hours of electricity, enough to power 450,000 homes per year.

“If you accept the premise British Columbia is going to grow, then you also accept the premise we’re going to need more power,” said Clark. That power will come from a variety of sources, including the Site C dam, which will have a lifespan of 100 years, she said. […]

Impacts ‘that can’t be mitigated’: CEO

BC Hydro President and CEO Jessica McDonald said the Crown corporation has spent seven years consulting with First Nations. “We acknowledge and respect that there are impacts,” she said. “There are impacts that can’t be mitigated.”

Discussions are continuing and there are hopes they’ll reach an agreement on accommodation, she said. Courts have ruled that in certain situations it may be necessary to compensate an aboriginal group for any adverse impacts a project may have on its treaty rights. Compensation could include habitat replacement, job skills or training, or cash.

Energy and Mines Minister Bill Bennett said the project is in the long-term best interest of the province, though he acknowledged it comes at a cost to people in the Peace River valley. “There are impacts to people who live in the Northeast, and nobody is happy about that,” he said.

It’s a major project and worth building, he said. “It’s big, it’s expensive, it’s a huge project, but it’s eight per cent of the total electricity needs in the province.” […] “<

 

 

See on Scoop.itGreen & Sustainable News

Swedish Stirling Engine Generator Converts Low Quality Landfill Gas to Energy in Poland

Swedish Stirling Engine generator specialist, Cleanergy supplies its GasBox generators to two landfill sites in Poland for the production of energy from low quality methane gas emitted from two major, following a successful pilot project earlier in the year.

Source: www.waste-management-world.com

>” […] GasBox – the centrepiece of its Combined Heat & Power (CHP) system – has been specifically developed to generate electricity and heat from low-quality methane gas produced by the decomposition of organic matter at the 2000+ landfill sites across Europe, most of which are more than 10 years old.

According to Cleanergy, many such landfill sites choose to flare the methane they produce.

The European Union Landfill Directive of 1999 states that flaring is only an option if it is impossible to extract energy from the methane gas. But up until today, older landfill sites have often broken these directives because the gas combustion engines traditionally used at newer landfills where methane levels are above 40% simply cannot produce electricity from lower grade, ‘dirty’ methane.

However, at the two Polish landfill sites the methane was released straight into the atmosphere rather than being flared.  To address this, Cleanergy’s GasBox was deployed at the Regional Centre of Waste Management in Domaszkowice in Poland in August.

This 25 hectare landfill site closed in the  2000. Since the installation of the GasBox, the electricity generated has been used to power equipment and to heat and electrify buildings at the site.

Following this success, Cleanergy’s CHP system has also been deployed at the Waste Neutralisation Enterprise in Sulnówko, a 7.5 hectare landfill site.

Anders Koritz, CEO at Cleanergy commented: “We developed our GasBox to meet a specific need – a complete CHP system that can run on low-grade methane gas. Sure enough the industry response since our launch in June has been amazing.”

According to Cleanergy its GasBox addresses this specific problem and is able to produce both electricity and heat from a methane gas concentration down to 18%.

Installed inside a modular container, Cleanergy’s GasBox is an autonomous and flexible stirling engine unit. Also inside the container is a real-time power management system with remote access; a fuel pipe; plus a heat and electricity connection to a house/factory/warehouse with optional grid functionality.

With a claimed ROI of three to five years, the company said that its GasBox is now commercially deployed at several locations in Norway, Slovenia, Sweden (in collaboration with the Swedish Energy Agency) and the UK. […]”<

 

See on Scoop.itGreen Energy Technologies & Development