Using Building Air Conditioning Systems For Carbon Capture and Synthetic Fuels

There have been many global developments on the science of CO2 recovery from the atmosphere. Existing and future buildings use A/C systems for temperature control of ventilation systems. Large buildings move massive amounts of air during the course of a day.

At design rates of 10 to 20 cfm (cubic feet/minute) per person large assemblies or office towers rates of ventilation can reach up to 100,000 cfm or more per building. This air is required to be temperature controlled, which is achieved by air conditioning units, which extract heat energy from the air stream and reject this heat to the outside (a heat pump can also operate in reverse mode, heating the inside air stream and absorbing heat from the outside air).

The fan motors used to move the conditioned air consumes considerable electricity to operate as do the outside air fans used to cool the A/C system. The outside cooling (heating) loop is operated by forcing air through fin-tube radiators which contain pressurized refrigerant circulating in a closed loop cycle.

Calgary-based Carbon Engineering’s first direct air capture plant in Squamish, B.C. David Keith, the founder of Carbon Engineering, thinks the idea of AC integrated carbon capture systems is attractive, but may not be practical because of economies of scale. (THE CANADIAN PRESS/Darryl Dyck) (1)

It has been proposed to incorporate carbon capture and sequestration in these systems and create a new, clean energy source which can be re-introduced to the economy as a fuel and material feed-stock for a variety of industries.

However, the process is not without certain drawbacks. One major hurdle is finding the additional energy required to further process the captured CO2 into a viable fuel. The process requires electrolysis of water and other energy inputs to refine the captured carbon. It is proposed that PV Cells would be a good energy source for the process.

“[…] In a new analysis, scientists argue for using air conditioning units to capture carbon dioxide straight from the atmosphere and transform it into fuel. The idea is that these renewable-energy powered devices would lower atmospheric CO2 and provide a scalable alternative to oil, natural gas and other fossil fuels.

The conversion tech would first take in CO2 and water from the air. Then, an electric current would split the water into hydrogen and oxygen. Finally, combining the hydrogen with the captured CO2 would produce hydrocarbon fuel.

It’s all theoretical for now, but the technology for each step of the process already exists. Companies like Climeworks in Switzerland, Siemens AG in Germany and Green Energy in the US, have commercialized technologies that separately capture CO2 directly from the air, isolate hydrogen from water and produce fuels. But a complete system that puts all of the pieces together, is lacking. The fact that the components are available, however, means “it would be not that difficult technically to add a CO2 capture functionality to an A/C system,” the authors write.

If air conditioners were equipped with the appropriate technologies, the researchers calculate Fair Tower, a landmark office building in downtown Frankfurt am Main in Germany, could produce 550 to 1,100 pounds of liquid hydrocarbon fuels every hour, or about 2,200 to 44,00 tons per year. When the researchers extrapolated on this calculation they found the five cities in Germany with the largest office space could together produce 2.6 to 5.3 million tons of fuel each year, the team reports Tuesday in the journal Nature Communications. […]” (2)

  1. https://www.cbc.ca/radio/quirks/may-4-2019-brain-resuscitation-hippos-supply-algae-skeletons-slug-surgical-glue-and-more-1.5119885/how-air-conditioners-could-keep-you-cool-and-capture-carbon-1.5119911
  2. http://blogs.discovermagazine.com/d-brief/2019/04/30/could-air-conditioners-convert-atmospheric-co2-to-fuel/#
Advertisements

Rural Electrification with Renewable Energy Micro-Grids

Pilot Programs to Provide Research of Renewable Energy Solutions for Improved Air Quality  

New Delhi, India— November 19, 2018—ENTRADE and Tata Powered Delhi Distribution Limited (Tata Power-DDL) has commissioned a waste-to-energy testing pilot in conjunction with solar and battery storage research and development at its Rohin-Delhi grid station test facility in New Delhi. Please see video of the Tata Power-DDL pilot currently underway . 

Speaking on the launch of the testing facility, Mr. Praveer Sinha CEO & MD Tata Power said “Rural Electrification is the catalyst to bring economic growth and meeting the socio-economic goals of people living in rural communities. TATA Power is implementing renewable microgrid solutions across rural India. These Microgrid solutions run using Solar systems, Battery storage and Biomass Generation as a novel concept to promote renewable energy. We look forward to this collaboration of Tata Power and ENTRADE in promoting green, affordable and sustainable rural micro-grid power Generation solutions in India.” 

“We started it as an R&D project and soon found that it has a big potential in the rural market particularly for offering inexpensive and sustainable rural micro-grid solutions. The combination of organic waste coupled with solar and battery storage to generate clean energy offers excellent choice to the consumers at a much reasonable price. ” said Mr. Sanjay Banga, CEO, Tata Power-DDL. 

Utilizing the ENTRADE E4 mobile power system, Tata Power-DDL and ENTRADE have built India’s first biomass-to-energy testing facility, showcasing the ability to produce electricity using organic waste as feedstock. Solar panel and battery storage testing will also be conducted at the site. The pilot programs will provide R&D data on clean energy solutions while exploring options for electrification of rural India. The E4 system will be replaced with an EX system in the first quarter of 2019.

A major source of air pollution in the region comes from coal-fired power plants and the testing of renewable energy sources is detrimental to improving air quality. Plans for sourcing local biomass fuels to be converted to clean energy are being considered with the most technologically advanced and fasted growing biomass systems on the market. Long term studies will potentially include waste from agricultural crops. Implications of post pilot opportunities with the abundance of agricultural crops typically burned in the open could provide dramatic air quality improvements for industrial and rural regions. 

“Through our R&D work with Tata Power-DDL, we can help alleviate environmental issues and provide massive new opportunities through this truly groundbreaking technology bringing access to clean energy,” stated Julien Uhlig, CEO of ENTRADE X. “Our decentralized energy systems are not only more cost effective but also provide a fast deployment solution for rural electrification anywhere in the world.” 

https://www.linkedin.com/pulse/tata-power-ddl-entrade-launch-waste-energy-solar-power-julien-uhlig/

Utility To Replace N-Gas Peaker Plants With Energy Storage

Duane M. Tilden, P.Eng                          November 10, 2018

The main caveat of Energy Efficiency is to do more with less. Energy Efficiency is low-lying fruit, easy to harvest. For utilities and the grid there are many advancements coming that will allow us to enable a more resilient and sustainable electrical transmission system connecting providers, consumers, and prosumers.

Electricity Prosumers & Renewable Energy

“Active energy consumers, often called ‘prosumers’ because they both consume and produce electricity, could dramatically change the electricity system. Various types of prosumers exist: residential prosumers who produce electricity at home – mainly through solar photovoltaic panels on their rooftops, citizen-led energy cooperatives or housing associations, commercial prosumers whose main business activity is not electricity production, and public institutions like schools or hospitals. The rise in the number of prosumers has been facilitated by the fall in the cost of renewable energy technologies, especially solar panels, which in some Member States produce electricity at a cost that is the same or lower than retail prices.” (1)

What is a Peaker Plant?

Peaking power plants, also known as peaker plants, and occasionally just “peakers”, are power plants that generally run only when there is a high demand, known as peak demand, for electricity.[1][2] Because they supply power only occasionally, the power supplied commands a much higher price per kilowatt hour than base load power. Peak load power plants are dispatched in combination with base load power plants, which supply a dependable and consistent amount of electricity, to meet the minimum demand.” (2)

As more renewable energy projects are added to provided base load power, in an absence of electricity when renewable sources of electricity are inactive a greater reliance is put on peaker plants to make up energy shortfall . However, as improvements in energy storage solutions gain traction through capacity and competitive costing it is now possible to replace fossil fuel powered peaker plants with energy storage.

Public Utilities Commission of the State of California (CPUC)

In a recent decision the State of California has proceeded with plans to develop and procure electrical storage solutions for the Public Utility as an alternative to aging natural gas peaker plants. A net reduction in carbon emissions by eliminating fossil fuel consumption.

Energy Storage California 2018

Table 1 – Summary of Pacific Gas and Electric’s (PG&E’s) energy storage power purchase
agreements (PPAs)

“Approval of PG&E’s landmark energy storage solicitation is the most significant example to date of batteries taking the place of fossil fuel generation on the power grid.

Energy storage has helped decrease the California’s reliance on gas for years, particularly since 2016, when regulators ordered accelerated battery procurements to counteract the closure of a natural gas storage facility outside Los Angeles.

The PG&E projects, however, are the first time a utility and its regulators have sought to directly replace multiple major power plants with battery storage.

The projects would take the place of three plants owned by generator Calpine — the 580 MW Metcalf plant and the Feather River and Yuba City generators, both 48 MW.

​Calpine and the California ISO last year asked the Federal Energy Regulatory Commission to approve reliability-must-run (RMR) contracts for the plants, arguing they are essential to maintain power reliability. The one-year contracts would see California ratepayers finance the continued operation of the generators, which are losing money in the ISO’s wholesale market.

FERC approved the request in April, but California regulators were already planning for when the plants retire. In January, they ordered PG&E to seek alternatives to the generators, writing that the lack of competition in RMR contracts could mean higher prices for customers. ” (4)

 

References:

  1. European Parliament Think Tank – Electricity Prosumers
  2. Peaking_power_plant
  3. Resolution E-4949. Pacific Gas and Electric request approval of four energy storage facilities with the following counterparties: mNOC, Dynegy, Hummingbird Energy Storage, LLC, and Tesla.
  4. Storage to replace California Peaker Plants