An Engineering Blockchain Cryptocurrency

The revolutionary aspect of the blockchain is starting serious discussions in the Professional Engineering community. Indications are that there are some fundamental problems in Engineering may be solved by the issuance of a token, in this case called Quant (1) and is currently in the “sand-box” phase of development.

The plan, in part, involves mining Quant to create a public key, or data-base called Engipedia.  There is also a “proof-of-stake” (2) aspect, which forms an engineer’s private key summarizing by algorithm the engineer’s personal data such as education, qualifications, projects, and other contributions or related works.

The Quant token, which is proposed to have inherent smart contract capabilities will be mined by engineers in a variety of ways, most of which are intended to establish an expanding  knowledge base, one such enterprise is called Engipedia. This is a knowledge base which has a formidable upside for democratic technological advancement and dissemination of workable knowledge worldwide.

As a virtual currency, the Quant token may provide a necessary bridge to financing that was previously inaccessible to engineers. Often pools of capital are controlled by vested interests or politically minded parties. Economic opportunities, which previously were unavailable due to lack of funding, may now have a financial vehicle for entrepreneurial Engineers.

The Design is the Contract

Engineering is different than finance and insurance. Finance and Insurance merely need to represent a physical object in a party / counter-party transaction script.  There is no design involved. Engineering represents a physical object – the engineering design and specification IS the smart contract. Then, what happens in construction, operations, maintenance, renovation, and replacement is far too complex to be scripted in a single smart contract. Engineering outcomes involve enormous mass, forces, and real-life consequences. (3)

References:

  1. The Market for QUANT
  2. QUANT Proof of Stake
  3. A Warning to Engineering Firms Concerning Blockchain Technology
Advertisement

The BC Energy Step Code – Missing the Point

The BC Energy Step Code is currently being implemented in British Columbia as an answer to future energy considerations in new building construction. It achieves this claim of moving towards “Net Zero” building construction by utilizing a building envelope first approach with modeling and a performance test.

The idea is that by raising a building’s theoretical energy efficiency a building will become a net zero home. In the process, there is a requirement for a certified and licensed energy adviser to be involved in the modeling, construction and testing phases of the building. (1)

In conjunction with this approach is the claim that builders can construct these buildings being “fuel-neutral”. Using this rationale the roles of mechanical systems design, testing and commissioning are omitted in the performance considerations of the building.

However, a net-zero building must include the omitted systems as the design and operation of necessary systems. These may include the ventilation and exhaust systems, water heating, laundry, and heating systems. Also, rain-water collection for irrigation and gray water systems or other load reduction schemes may all may contribute to the energy consumption and success of a “net zero” building.

Some of these services will always be required in a municipal setting such as electrical, water and waste. Reduction strategies are advised as further increases in population will add additional loads at existing consumption rates which might overload existing supply and waste systems infrastructure such as pipes and cable.

The final answer to how a building performs will be in the overall utility bills paid by the building for its operation. This includes the electrical power, gas consumption, solid and liquid waste disposal and water supplied. Unless you live in a remote rural area where none of these services are provided by a municipality, there will always be a design component of the mechanical systems that contributes to the operation of an energy efficient home.

References:

  1. How the BC Energy Step Code Works

 

Sustainable Smart Cities and Disaster Mitigation – Preparing for the 1000 Year Storm

Hurricanes Cause Massive Damage

In light of recent events, such as the current hurricane season of 2017 which has already struck large sections of Texas with Hurricane Harvey causing massive damage which has been estimated at $180 billion by Texas Governor Greg Abbott (1) there are questions about how we can prepare cities better for disaster. One method considered is in our building codes, which are constantly being upgraded and improved, by constructing buildings to be more resilient and handle harsher conditions.

There is a limit to what a building code can do and enforce. Areas and regions that have seen widespread destruction, will have to be rebuilt.  However, to what standards? The existing building codes will have to be examined for their efficacy in storm-proofing buildings to withstand the effects of high winds and water penetration, some of which has already been performed.

Codes do not prevent external disasters such as from storms, tornadoes, tidal waves (tsunami), earthquakes, forest fire, lightning, landslides, nuclear melt-down and other extreme natural and man-made events. What building codes do is establish minimum standards of construction for various types of buildings and structures. Damage to buildings, vehicles, roads, power systems and other components of a city’s infrastructure are vulnerable to flooding which cannot be addressed in a building code. Other standards are needed to address this problem.

Storm-Proofing Cities

Other issues arise regarding flooding, and how water can be better managed in the future to mitigate water collection and drainage. These may require higher levels of involvement across a community and perhaps beyond municipal constraints, requiring state-wide developments. Breakwaters, sea walls, levees, spill ways and other forms of structures may be added to emergency pumping stations and micro-grid generator/storage facilities as examples of infrastructure improvements that could be utilized.

Bigger decisions may have to be considered as to the level of reconstruction of buildings in vulnerable areas. Sea warming as noted occurring has some scientists pondering if there is a connection between global warming and increased storm volatility as indicated by water temperature rises and tidal records (2). If bigger and more frequent storms are to come, then it must be considered in future building and infrastructure planning.

Regional Infrastructure and Resiliency

Exposed regions as well as larger, regional concerns in areas of maintaining power, roadways, and diverting and draining water are major in the resiliency of a community. When a social network breaks down, there is much lost, and recovery of a region can be adversely affected by loss of property and work.

Many of the lower classes will not have insurance and lose everything. Sick and elderly can be especially exposed, not having means to prepare or escape an oncoming disaster, and many will likely perish unless they can get access to aide or a shelter quickly.

Constructing better sea walls and storm surge barriers may be an effective means to diverting water in the event of a hurricane on densely populated coastal areas. Although considered costly to construct, they are a fraction of the cost of damage that may be caused by a high, forceful storm surge which can obliterate large unprotected populated areas. The Netherlands and England have made major advancements in coastal preparedness for storms.

Storm Surge Barriers

Overall Effectiveness for Reducing Flood Damage

There are only a few storm surge barriers in the United States, although major systems installed abroad demonstrate their efficacy. The Eastern Scheldt barrier in the Netherlands (completed in 1986) and the Thames barrier in the United Kingdom (completed in 1982) have prevented major flooding. Lavery and Donovan (2005) note that the Thames barrier, part of a flood risk reduction system of barriers, floodgates, floodwalls, and embankments, has reliably protected the City of London from North Sea storm surge since its completion.

Four storm surge barriers were constructed by the USACE in New England in the 1960s (Fox Point, Stamford, New Bedford, and Pawcatuck) and a fifth in 1986 in New London, Connecticut. The barriers were designed after a series of severe hurricanes struck New England in 1938, 1944, and 1954 (see Appendix B), which highlighted the vulnerability of the area. The 1938 hurricane damaged or destroyed 200,000 buildings and caused 600 fatalities (Morang, 2007; Pielke et al., 2008).

The 2,880-ft (878-m) Fox Point Barrier (Figure 1-8) stretches across

the Providence River, protecting downtown Providence, Rhode Island. The barrier successfully prevented a 2-ft (0.6-m) surge elevation (in excess of tide elevation) from Hurricane Gloria in 1985 and a 4-ft (1.2-m) surge from Hurricane Bob in 1991 (Morang, 2007) and was also used during Hurricane Sandy. The New Bedford, Massachusetts, Hurricane Barrier consists of a 4,500-ft-long (1372-m) earthen levee with a stone cap to an elevation of 20 ft (6 m), with a 150-ft-wide (46-m) gate for navigation. The barrier was reportedly effective during Hurricane Bob (1991), an unnamed coastal storm in 1997 (Morang, 2007), and Hurricane Sandy. During Hurricane Sandy, the peak total height of water (tide plus storm surge) was 6.8 feet (2.1 m), similar to the levels reached in 1991 and 1997. The Stamford, Connecticut, Hurricane Barrier has experienced six storms producing a surge of 9.0 ft (2.7 m) or higher between its completion (1969) and Hurricane Sandy. During Hurricane Sandy, the barrier experienced a storm surge of 11.1 ft (3.4 m), exceeding that of the 1938 hurricane (USACE, 2012). (3)

The biggest challenge is to build storm surge barriers large enough for future Hurricanes. There is a question that given the magnitude of current and future storms that these constructed barriers may be breached.  Engineers design structures to meet certain standards, and with weather these were the unlikely 1 in 100 year storm events. However, this standard is not good enough as Hurricane Katrina in Louisiana exemplified, as being rated a 1 in 250 year storm event. With climate changes these events may become more frequent.

Much of the damage from Katrina came not from high winds or rain but from storm surge that caused breaches in levees and floodwalls, pouring water into 80 percent of New Orleans. To the south, Katrina flooded all of St. Bernard Parish and the east bank of Plaquemines Parish. Plaquemines Parish flooded again in 2012 with Hurricane Isaac.

Soon after Katrina, Congress directed the Corps of Engineers to build a system that could protect against a storm that has a 1 percent chance of happening each year, a “1-in-100-year” storm.

The standard is less a measure of safety and more a benchmark that allows the city to be covered by the National Flood Insurance Program. Louisiana’s master coastal plan calls for a much stronger 500-year system. The corps says Katrina was a 250-year storm for the New Orleans area.

Since 2005, the Army Corps has revamped the storm protection system’s 350 miles of levees and floodwalls, 73 pumping stations, three canal-closure structures, and four gated outlets. The corps built a much-heralded 26-foot-high, 1.8-mile surge barrier in Lake Borgne, about 12 miles east of the center of the city.

During Katrina, a 15- to 16-foot-high storm surge in Lake Borgne forced its way into the Intracoastal Waterway, putting pressure on the Industrial Canal levees that breached and caused catastrophic flooding in the city’s Lower 9th Ward.

“In New Orleans, we know that no matter how high we build this or how wide we build it, eventually there will be a storm that’s able to overtop it,” New Orleans District Army Corps spokesman Ricky Boyett says, admiring the immense surge barrier from a boat on Lake Borgne. “What we want is this to be a strong structure that will be able to withstand that with limited to no damage from the overtopping.” (4)

500 Year Floods

Hurricane Harvey brought an immense amount of extreme rain, which brought a record 64″ in one storm to the Houston metropolitan region. This is a staggering amount of water, over 5 feet in height, this amount of water could only overwhelm low-lying areas, and depressions in topography. Flash floods can happen during extreme storms, where a drainage system is designed for a 1:100 year flood event, and not for a 1:500 or 1:1000 year flood event. Road ways can easily become rivers as drainage systems back up and surface water has no place to collect.

500-year-floods

Figure 1. 500 year flood events in the USA since 2015 (5)

New standards in development may need to accommodate more stringent standards. Existing municipal drainage systems are not designed to handle extreme rain and other means of drainage systems may have to be developed to divert water away from centers of population. Communities will be built to new standards, where storm water management is given a higher priority to avert flooding.

BN-UX285_HARVEY_M_20170831100012

Figure 2. Floodwaters from Tropical Storm Harvey (6)

Given the future uncertainty of our climate and weather, we cannot continue to ignore the devastating effects that disasters have on cities and regions. We must ask some difficult questions regarding the intelligence of continuing to build and live in increasingly higher risk regions.

On a personal level every citizen must take some responsibility in their choices of where to live. As for governments they need to decide how best to allocate limited resources in rebuilding and upgrading storm protection systems. It is anticipated that some areas will be abandoned as risks become too high for effective protection from future storm events.

The Oil and Gas Industry

It seems there is an irony involved with the possibility that storms severity is linked to global warming, and that access to vulnerable regions often are in part economically driven by the oil and gas industry.  Hurricane Harvey is the most recent storm which is affecting fuel prices across the USA. Refinery capacity has shrunk due to plant shut-downs.  Shortages in local fuel supplies are occurring, as remaining gasoline stations run dry.

Goldman Sachs estimates that the hurricane has taken 3 million barrels a day — or about 17% — of refining capacity offline, and that’s likely to increase the overall level of crude-oil inventories over the next couple of months. (7)

Oil and gas are particularly vulnerable to exposure to the weather, and it is in their own best interests to provide local protection to the area so that they can continue extracting the resource. However, ancillary industries such as refining may better be served by relocation away from danger areas. Also, supply lines become choked by disaster, and can potentially have consequences beyond the region which was exposed to the disaster.

The Electric Vehicle in the Smart City

Such events can only put upward pressure on the price of fuel, while providing further incentive to move away from the internal combustion engine as means of motive power. Electric vehicles would provide a much better ability to recover quickly from storm events as they are not restricted by access to fuel. Micro-grids in cities provide sectors of available power for which electric emergency response vehicles can move.

By moving reliance away from carbon based fuels to renewable electric sources and energy storage, future development in cities may see the benefits inherent in the electric vehicle. Burning fuels create heat, water and carbon dioxide in the combustion process. They consume our breathable oxygen and pollute the atmosphere. Pipelines, tankers and rail cars can break and spill causing pollution. Exploration causes damage to the environment.

A city that is energy efficient and reliant on renewable sources of energy that benignly interact with the environment can approach self-sustainability and a high degree of resilience against disaster. This combined with designing to much higher standards which keep in mind the current volatility our climate is experiencing, and uses the lessons learned in other areas as indicators of best practices into the future.

 

References

  1. Hurricane Harvey Damages Could Cost up to $180 Billion
  2. Global warming is ‘causing more hurricanes’
  3. “3 Performance of Coastal Risk Reduction Strategies.” National Research Council. 2014. Reducing Coastal Risk on the East and Gulf Coasts. Washington, DC: The National Academies Press. doi: 10.17226/18811.
  4. Rising Sea Levels May Limit New Orleans Adaptation Efforts
  5. Houston is experiencing its third ‘500-year’ flood in 3 years. How is that possible?
  6. Hurricane Harvey Slams Texas With Devastating Force
  7. GOLDMAN: Harvey’s damage to America’s oil industry could last several months

California adopts nation’s first energy-efficiency rules for computers

The California Energy Commission has passed energy-efficiency standards for computers and monitors in an effort to reduce power costs, becoming the first state in the nation to adopt such rules. Th…

Source: California adopts nation’s first energy-efficiency rules for computers

Energy Efficiency Financing for Existing Buildings in California

Much of our efforts to reduce carbon emissions involves fairly complicated and advanced technologies. Whether it’s solar panels, batteries, flywheels, or fuel cells, these technologies have typically required public support to bring them to scale at a reasonable price, along with significant regulatory or legal reforms to accommodate these new ways of doing old things, […]

To recommend policies to boost this capital market financing for energy retrofits, UC Berkeley and UCLA Law are today releasing a new report “Powering the Savings:How California Can Tap the Energy Efficiency Potential in Existing Commercial Buildings.” The report is the 17th in the two law schools’ Climate Change and Business Research Initiative, generously supported by Bank of America since 2009.

The report describes ways that California could unlock more private investment in energy efficiency retrofits, particularly in commercial buildings.  This financing will flow if there’s a predictable, long-term, measured and verified amount of savings that can be directly traced to energy efficiency measures.  New software and methodologies can now more accurately perform this task.  They establish a building’s energy performance baseline, calibrating for a variety of factors, such as weather, building use, and occupancy changes.  That calibrated or “dynamic” baseline can then form the basis for calculating the energy savings that occur due specifically to efficiency improvements.

But the state currently lacks a uniform, state-sanctioned methodology and technology standard, so utilities are reluctant to base efficiency incentives or programs without regulatory approval to use these new methods.  The report therefore recommends that energy regulators encourage utilities to develop aggressive projects based on these emerging metering technologies that can ultimately inform a standard measurement process and catalyze “pay-for-performance” energy efficiency financing, with utilities able to procure energy efficiency savings just like they were a traditional generation resource. […]

via Solving The Energy Efficiency Puzzle — Legal Planet

Net Zero Case Study: Bullitt Center – Green Materials

The Bullitt Center in Seattle, Washington, is one of the most self-sufficient buildings on the planet.  It is net zero energy and, after the water reuse system is approved by city authorities, net zero water.  Net zero means that the building uses the same amount as it creates or generates – it is self-sufficient.

Source: greenbuildingelements.com

>”[…]

Healthy Green Materials

The Living Building Challenge requires projects to avoid as many of the chemicals and substances that are found on the Red List as possible.  These substances have been recognized by government agencies, such as the US Environmental Protection Agency, the European Union Commission, and the State of California, as potentially harmful to human or animal life on Earth.  Not all of the substances can be avoided, though, due to the lack of availability of materials that do not contain them.

The Bullitt Center team avoided over 360 known chemicals on this list.  Some were easy to avoid, as alternatives were readily available.  The team also worked with suppliers to create products that met their requirements, changing the way the products were made and making them available to others.

Most plumbing valves, even those made of brass and bronze, contain up to 7% lead.  Lead free valves, with an allowable lead content of only 0.25%, were used in both the potable and non-potable water systems, including fire sprinklers.Phthalates are commonly used in PVC and other plastic products.  A high-performance water barrier company performed 6 months of research to develop a product that did not contain phthalates, just for the Bullitt Center project.  The new product has now replaced the original version going forward.  Dioxins are a by-product of the manufacture, combustion, and disposal of products containing chlorine, most notably PVC products.  Couplings for no-hub ductile iron pipe are commonly made with neoprene, which contains chlorine.  The team worked with the manufacturer to special order couplings made of EPDM (ethylene propylene diene monomer) rubber.  The electrician was able to find electrical wire not coated in PVC that met code standards.  The fiberglass insulation in the project is held together by a plant-based polymer, not the usual one that contains formaldehyde.

Certified Wood

The Bullitt Center is a wood-framed structure.  Because of its location and the importance of the timber industry in the Pacific Northwest, the project team decided this was the best choice for the project.  100% of the lumber in the building has been harvested from anForest Stewardship Council (FSC) certified source.  The project was also recognized as the only commercial project to receive the Forest Stewardship Council Project Certification, in recognition of responsible forest products use throughout the building.

Local Sourcing

Perhaps the greatest story about green materials and the Bullitt Center involves the curtain wall (window) system.  Due to the high performance needs of the project, only one product could be used, and it was only manufactured in Europe.  A Washington company partnered with the European manufacturer to gain the knowledge to manufacture and install the system in the US.   The Washington company flew their employees over to find out how to make and install the system, and a licensing agreement was reached.  Now this high performance system is available in the US for future projects to use.

[…]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Michigan’s Consumers Energy to retire 9 coal plants by 2016

New EPA regulations are an opportunity to modernize the generating fleet, according to a Consumers Energy official.

Source: www.utilitydive.com

>”[…] Consumers Energy will shutter nine coal plants in Michigan as EPA air pollution regulations make them unprofitable to operate, MLive reports. And the Michigan utility won’t be the only one. A wave of coal retirements will roll across the Midwest by early 2016, shuttering more than 60 generating plants, a Consumers official told the “Greening of the Great Lakes” weekly radio program.In addition to the regulations under the Clean Power Plan and other EPA programs, Consumers says many of the nine coal plants were built in the 1950s and are simply at the end of their productive lives.  […]

Last year Consumers Energy announced it had selected AMEC to run the utility’s decommissioning program for the planned retirement of seven operating units at the utility’s three oldest coal-fired generating plants. Though there is still uncertainty over just what impact a slate of EPA regulations will have, Consumers last year said the power plants being decommissioned have an average operating life-span of more than 60 years and collectively represented approximately 950 MW of electric capacity.

The Supreme Court has agreed to hear a challenge to the EPA’s Mercury and Air Toxics Standard, but as it stands the regulations could apply to 1,400 generators at more than 600 of the nation’s largest power plants.

Federal regulators believe the tighter controls could prevent up to 11,000 premature deaths each year by limiting mercury, particulate matter, and other harmful pollutants it says are hazardous to public health.”<

See on Scoop.itGreen & Sustainable News

Minimum Efficiency Standards for Electric Motors to Increase – DOE

DOE’s analyses estimate lifetime savings for electric motors purchased over the 30-year period that begins in the year of compliance with new and amended standards (2016-45) to be 7.0 quadrillion British thermal units (Btu). The annualized energy savings—0.23 quadrillion Btu—is equivalent to 1% of total U.S. industrial primary electricity consumption in 2013.

Source: www.eia.gov

>” Nearly half of the electricity consumed in the manufacturing sector is used for powering motors, such as for fans, pumps, conveyors, and compressors. About two thirds of this machine-drive consumption occurs in the bulk chemicals, food, petroleum and coal products, primary metals, and paper industries. For more than three decades the efficiency of new motors has been regulated by federal law. Beginning in mid-2016, an updated standard established this year by the U.S. Department of Energy (DOE) for electric motors will once again increase the minimum efficiency of new motors.

The updated electric motor standards apply the standards currently in place to a wider scope of electric motors, generating significant estimated energy savings. […]

Legislation has increased the federal minimum motor efficiencies requirements over the past two decades, covering motors both manufactured and imported for sale in the United States. The Energy Policy Act of 1992 (EPAct) set minimum efficiency levels for all motors up to 200 horsepower (hp) purchased after October 1997. The U.S. Energy Independence and Security Act (EISA) of 2007 updated the EPAct standards starting December 2010, including 201-500 hp motors. EISA assigns minimum, nominal, full-load efficiency ratings according to motor subtype and size. The Energy Policy and Conservation Act of 1975 also requires DOE to establish the most stringent standards that are both technologically feasible and economically justifiable, and to periodically update these standards as technology and economics evolve.

Motors typically fail every 5 to 15 years, depending on the size of the motor. When they fail they can either be replaced or repaired (rewound). When motors are rewound, their efficiencies typically diminish by a small amount. Large motors tend to be more efficient than small motors, and they tend to be used for more hours during the year. MotorMaster+ and MotorMaster+ International, distributed by the U.S. Department of Energy and developed by the Washington State University Cooperative Extension Energy Program in conjunction with the Bonneville Power Administration, are sources for cost and performance data on replacing and rewinding motors.

Improving the efficiency of motor systems, rather than just improving the efficiency of individual motors, may hold greater potential for savings in machine-drive electricity consumption. Analysis from the U.S. Department of Energy shows that more than 70% of the total potential motor system energy savings is estimated to be available through system improvements by reducing system load requirements, reducing or controlling motor speed, matching component sizes to the load, upgrading component efficiency, implementing better maintenance practices, and downsizing the motor when possible.”<

 

See on Scoop.itGreen Energy Technologies & Development

Berkeley City Property Owners to Pay For Energy Audits

Later this month, the Berkeley City Council is slated to approve a new law — designed to increase building sustainability and reduce greenhouse gas emissions — that will mandate new fees and recurring energy assessments for local property owners.

Source: www.berkeleyside.com

>” […] The law would require payment of a $79-$240 filing fee, depending on building size, by property owners every 5-10 years. On top of that, property owners will be required to undergo building energy assessments on the same cycle, conducted by registered contractors, to the tune of an estimated $200 for a single-family home and up to $10,000 for large commercial buildings.

The goal of the new law, according to the city, is to make “building energy use information more transparent to owners and prospective renters or buyers,” and ultimately inspire more investment in energy upgrades. The law would replace existing minimum energy and water efficiency measures in Berkeley. The proposed ordinance would not require that upgrades are actually done, but will compile energy scores and summaries for city properties, and make them readily available online.

Explained city sustainability coordinator Billi Romain, “Rather than require a list of specific measures, it requires an evaluation of a building’s efficiency opportunities and identifies all available incentives and financing programs.”

Romain said the hope is that, by giving people a “road map” for potential improvements, they will be more likely to schedule them to fit in with other home projects, such as seismic work. In addition to cutting down on local greenhouse gas emissions, the new ordinance has several other goals, from reducing utility costs that cause local dollars to “leak out” of Berkeley, to creating a more comfortable, durable building stock, as well as fortifying the local “green” workforce. […]

According to a city Energy Commission report on the ordinance, the assessments would take place on a five-year cycle for large buildings and every 8-10 years, or upon sale, for medium-sized and small buildings. Some of the costs may be offset by rebates and other incentives, and the program is set to include temporary “hardship deferrals” for those with financial constraints, and exemptions for high-efficiency buildings (see page 14). […]”<

 

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning