Efficient HVAC Systems

Gallery

This gallery contains 15 photos.

Originally posted on Energy Systems & Sustainable Living:
Heating, Ventilation and Air Conditioning systems (HVAC) controls the indoor climate by adding or extracting heat and adding or removing mass (e.g. water vapour and dust). To combat summer heat and winter…

Multifamily Building Energy Efficiency: SLEEC Financing

This winter, ACEEE, in partnership with Energi Insurance Services, will host a second gathering of select members of the Small Lenders Energy Efficiency Community (SLEEC) in Washington, D.C. The initial SLEEC convening in October 2013 brought together small- to medium-size lenders to discuss strategies for expanding activity in the market for energy efficiency financing. Building off the success of that first meeting, the second SLEEC gathering will focus exclusively on financing in the multifamily sector […]

Source: aceee.org

>” […] The goal of the upcoming SLEEC meeting is to discuss how recent developments inform the lender perspective on the size, attractiveness, and viability of the finance market for multifamily efficiency. We chose to address multifamily this year because potential savings are phenomenal at an estimated $3.4 billion per annum, and multifamily has traditionally been characterized by the label “hard to reach” due to significant barriers to entry. Single-family residential, large commercial, and MUSH (municipal, universities, schools, and hospitals) markets pose fewer barriers and have therefore been easier to approach, while multifamily is a more complex market posing greater obstacles.

The first and most commonly cited obstacle is known as the split-incentive problem: Landlords and building owners don’t always have an incentive to pursue energy efficiency improvements since their tenants would be the ones benefitting from reductions in energy bills. The next most bemoaned roadblocks are a lack of information and lack of available capital. Landlords and owners are experts at running their buildings, but may be in the dark on energy efficiency. Utilities and many loan agencies, while knowledgeable about energy efficiency, lack experience interacting with tenants. The resulting information gap inhibits energy efficiency projects from getting off the ground. This problem is exacerbated by a lack of capital, especially in the affordable housing market, where many buildings owners hold 30-year mortgages on their property with only one refinancing opportunity after 15 years. Unless building owners and potential lenders can capitalize on this small window, many projects would not have another opportunity to finance efficiency improvements for another 15 years.

Despite these barriers, there are a number of successful initiatives that are poised for impact. Perhaps the most successful is Energy Savers, a Chicago-based partnership between Elevate Energy and the Community Investment Corporation (CIC) that has retrofitted 17,500 apartments since 2008.  […] Innovative programs such as these are paving the way for energy efficiency in the multifamily housing market.

A perceived lack of capital may be attributable to issues surrounding the valuation of energy efficiency from a building owner’s perspective that manifests as low demand. […] “<

 

See on Scoop.itGreen Building Design – Architecture & Engineering

Advertisement

Lighting Controls in Buildings, Demand Management and Microgrid Development

Lighting control systems can help microgrids shed load, improve demand response, use resources efficiently, and offer greater overall reliability.

Source: energyefficiencymarkets.com

>” […] Lighting Control Facilitates Load-shed Strategies

Load shed, or the ability to quickly reduce electricity use during peak periods, is critical to ensuring microgrid reliability. Because lighting uses a considerable proportion of building peak electrical loads (30% of peak electricity),1 and because reduced light levels deliver immediate reductions in electricity, lighting control is one of the simplest and most predictable demand response solutions.

The reduction of lighting load also provides a reduction in HVAC cooling load during the summer, which is the most common peak electrical period.  Furthermore, since dimming is typically unobtrusive when it is executed over a period of time (as little as 10 seconds), lighting control is a viable option for immediate emergency response.

Dimming as a load shed strategy is highly effective because the human visual system has the ability to accommodate a wide variety of light levels with minimal effect on the occupants2,3.  When a demand reduction is required a gradual dimming of electric lighting can reduce light levels by 35 percent before 20 percent of the occupants attempt to intervene.  Response time is essentially instantaneous, typically has little impact on occupant comfort, and demand savings from lighting are more predictable than those from HVAC response.

Light management systems have the capability to automatically trigger a demand response event from a utility signal or from time clock scheduling. Therefore, a predictable and effective demand response strategy can be automatically implemented while going virtually unnoticed to the building occupants.

Energy codes, standards, and green building certifications such as ASHRAE (American Society of Heating, Refrigerating, and Air Conditioning Engineers) 90.1, IECC (International Energy Conservation Code), California Title 24, ASHRAE 189, IgCC (International Green Construction Code), or LEED (Leadership in Energy and Environmental Design) now include lighting controls as a part of a whole-building energy strategy.

There are subtle differences for each code/standard/certification, but some general requirements and/or credits include: required lighting control for most areas (manual or automatic), automatic lighting shut-off, some automatic receptacle shut-off, daylight controls for daylit spaces, automatic shut-off of exterior lighting during daytime hours, and various levels of occupancy/vacancy control. As a result of buildings updating their basic lighting control infrastructure to meet code, they are increasingly becoming capable of connecting to a microgrid, without the need for additional significant investments.

[…]”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

BEMS for Smaller Buildings $6 Billion Growth from 2014 to 2022

The market for building energy management systems (BEMS) for small and medium-sized commercial buildings is expanding as building owners and managers demand more energy savings and easier ways to manage energy use in their facilities, notes Navigant Research.

Source: www.achrnews.com

>” […]“Lower expenditures on energy management in the small and medium-sized building market, along with the lower penetration of advanced controls and building management systems, has limited the penetration of BEMS in this sector,” said Noah Goldstein, research director with Navigant Research. “Given the increasing importance of energy savings, however, BEMS are poised to be a tool that enables savings in both cost and carbon emissions in small and medium buildings.”

The most rapid growth in the BEMS market for smaller buildings, according to the report, is expected to occur in Europe and Asia Pacific, where new construction and regulation are promoting the installation of BEMS equipment and in turn creating demand for associated services and software. In the North American market, BEMS sales are expected to be concentrated in software, driven by utility and regulatory initiatives that promote energy efficiency and building energy reporting. […]”<

 

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

DOE Proposes Major Energy Efficiency Changes for Commercial Air Conditioners

The White House announced a number of commitments to energy efficiency this morning, not the least of which is a proposed energy efficiency standard for rooftop air conditioners that could produce the largest electricity savings under any U.S. appliance efficiency…

 

image courtesy of http://akbrown.com/?page_id=278

Source: switchboard.nrdc.org

>”[…] NRDC strongly applauds today’s White House’s efficiency and clean energy announcements which come the same week that a new energy-savings standard became effective for refrigerators and freezers, with the majority of models cutting their energy use by 20 to 25 percent, thanks to a 2010 consensus recommendation to the Department of Energy (DOE) from refrigerator manufacturers, efficiency advocates, consumer groups and states.

According to the White House, the rooftop air conditioner proposed standard announced would help cut carbon pollution by more than 60 million metric tons, and could save consumers nearly $10 billion on their energy bills through 2030.  […]

The announcement follows significant groundwork by DOE in this product category, including DOE’s High Performance Rooftop Unit Challenge, a competition among manufacturers to produce efficient cooling units that cut their energy use almost in half and are still affordable in the commercial and industrial real estate space. DOE worked with members of its Commercial Building Energy Alliances (CBEA), which includes many large commercial building owners, to create a challenge specification that rooftop air conditioning manufacturers could meet. As part of the challenge, CBEA members, including Target, Walmart, Macy’s and McDonald’s, expressed strong interest in potentially purchasing high-efficiency roof-top units, helping to drive buyer support for the challenge levels. Manufacturers Daikin McQuay and Carrier succeeded in producing rooftop ACs that met the challenge specifications and resulted in substantial energy reductions.

Also included in today’s announcement are further savings from building energy codes. DOE will issue its final determination that the latest commercial building energy code – ASHRAE 90.1-2013 – saves energy compared to the previous version. Once DOE issues a positive determination that the new code saves energy compared to the previous code, individual states will consider the code for adoption leading to energy savings in new buildings and major retrofits in those states. DOE will also issue its preliminary determination on the latest residential energy-saving building code – the IECC 2015. DOE estimates that the updated commercial building standards will reduces energy bills for states and the federal government, while cutting emissions by 230 million metric tons of carbon dioxide through 2030.  […]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Methods of Improving Data Centers’ Energy Efficiency and Performance

America’s data centers are consuming — and wasting — a surprising amount of energy.

Source: www.livescience.com

>”Our study shows that many small, mid-size, corporate and multi-tenant data centers still waste much of the energy they use. Many of the roughly 12 million U.S. servers spend most of their time doing little or no work, but still drawing significant power — up to 30 percent of servers are “comatose” and no longer needed, while many others are grossly underutilized. However, opportunities abound to reduce energy waste in the data-center industry as a whole.  Technology that will improve efficiency exists, but systemic measures are needed to remove the barriers limiting its broad adoption across the industry.

How much energy do data centers use?

The rapid growth of digital content, big data, e-commerce and Internet traffic more than offset energy-efficiency progress, making data centers one of the fastest-growing consumers of electricity in the U.S. economy, and a key driver in the construction of new power plants. If such data centers were a country, they would be the globe’s 12th-largest consumer of electricity, ranking somewhere between Spain and Italy.

In 2013, U.S. data centers consumed an estimated 91 billion kilowatt-hours of electricity. That’s the equivalent annual output of 34 large (500-megawatt) coal-fired power plants — enough electricity to power all the households in New York City, twice over, for a year.  […]

Fixing the problem

While current technology can improve data center efficiency, we recommend systemic measures to create conditions for best-practices across the data center industry, including:

Adoption of a simple, server-utilization metric. One of the biggest efficiency issues in data centers is underutilization of servers. Adoption of a simple metric, such as the average utilization of the server central processing units (CPUs), is a key step in resolving the energy-consumption issue.  […]

Rewarding the right behaviors. Data center operators, service providers and multi-tenant customers should review their internal organizational structures and external contractual arrangements and ensure that incentives are aligned to provide financial rewards for efficiency best practices.  […]

Disclosure of data-center energy and carbon performance.Public disclosure is a powerful mechanism for demonstrating leadership and driving behavior change across an entire sector. […]

If just half of the technical savings potential for data-center efficiency that we identify in our report is realized (taking into account market barriers), electricity consumption in U.S. data centers could be cut by as much as 40 percent.  […]”<

 

See on Scoop.itGreen Energy Technologies & Development

Data Centers and Energy Efficiency

New analysis suggests there’s still an opportunity to cut power consumption and save billions in 2014.

Source: www.greenbiz.com

>”A new tally by the Natural Resources Defense Council (NRDC) suggests there’s still a big opportunity to cut energy usage by 40 percent, saving more than $3.8 billion in 2014 alone.  Put another way, that’s like switching off 39 billion kilowatt-hours of electricity, the equivalent of 14 large, coal-fired power plants.

“Most of the attention is focused on the highly visible hyperscale ‘cloud’ data centers like Google’s and Facebook’s, but they are already very efficient and represent less than 5 percent of U.S. data center electricity consumption,” said Pierre Delforge, NRDC’s director of high-tech energy efficiency. “Our small, medium, corporate and multi-tenant data centers are still squandering huge amounts of energy.”

Here’s the likely outcome: By 2020, U.S. data centers will probably require about 140 kilowatt-hours of electricity to keep online.

The biggest culprits in wasteful IT power consumption are underutilized servers using significant amounts of electricity without performing any useful purpose, according to NRDC.  […]

Figures suggest the average server operates at just 12 percent to 18 percent of its capacity, which means businesses could stand to be far more aggressive about consolidating or virtualizing them. That’s particularly true of the smallest server rooms, ones that crop up with little advance planning.

“The more work a server performs, the more energy-efficient it is—just as a bus uses much less gasoline per passenger when ferrying 50 people than when carrying just a handful,” the analysis notes.

Among the recommended fixes for this persistent problem are the adoption of metrics that provide deeper insight into average server utilization, more public disclosure of data center energy performance information, and “green” data center leases that provide incentives for energy savings.

The reason why these green data center service contracts work, according to the report, is because they create financial incentives for companies to consider their energy use. […]”<

See on Scoop.itGreen Energy Technologies & Development

Maintaining High Performance HVAC Control Systems for Cost Savings in Building Operations

The performance level of a building is directly related to the performance level of its control systems. You cannot manage a high performance building without high performing control systems.

 

Source: www.automatedbuildings.com

>”We rely on control systems to monitor and manage our building systems. For the most part it’s been assumed that once the control system is installed and configured it will work for years with little attention and minimal maintenance. Some systems may be trouble-free, but the majority of them will need regular attention and maintenance. Over time hardware will fail, software parameters and versions change and slowly the control system will “drift” from its original configuration and performance.

The role of control systems is somewhat undervalued. When you examine the most complex system in most buildings, the HVAC infrastructure, you find that it’s the HVAC control system, not the HVAC equipment, which produces the most operational issues and is the leading cause of inefficient energy use. Lawrence Berkley National Laboratories examined 60 buildings and found the highest frequency of common problems with HVAC was in the control system. Texas A&M research determined that of the operational and maintenance measures that could produce significant energy savings, 77% of the savings were from correcting control problems.

Maintaining a high performing control system involves regular maintenance, software and data management and organizational policies. The issues that can cause problems with a building control system are the same challenges all of us have had at one time or another with our computer or smartphone: problems related to software, hardware, communications networking and “user” mistakes. What follows is an overview of some of the typical control system issues and recommendations as to how to keep it performing at a high level.”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Canadian green building market shows strong growth into future reported by CaGBC

The Canadian green building market has grown in the last few years and is expected to continue its strong growth in years to come, according to a recent report released by the Canadian Green Building Council (CaGBC).

Source: dcnonl.com

>”The report projects the figure to grow in upcoming years and a shift to happen as firms ramp up their green projects to more than 60 per cent. The main factors triggering the green trend include companies wanting to do ‘the right thing’ when it comes to social and environmental responsibility.

“Doing the right thing was very important to a lot of the respondents, which surprised me…obviously the Canadian industry has a lot social consciousness” added Mueller.

Companies are also experiencing significant cost savings through various efficiencies.

Eighty two per cent of building owners and developers report decreases in energy consumption compared to similar buildings and 68 per cent of owners/developers report decreases in water consumption.

In Canada, businesses reduced their operating costs by 17 per cent through green buildings in 2014, ahead of the global average of 15 per cent in 2012.

[…]

 

The top sectors currently with green projects expected to be certified LEED (Leadership in Energy and Environmental Design) are, new institutional construction, new commercial construction, new low-rise residential, new mid and high-rise residential, and existing buildings/retrofit.

“In the public sector, the institutional sector, there’s a very strong commitment to build buildings to the LEED standard,” Mueller added. “Our focus is very much on building the LEED standard.”

Green Building is also beginning to build a strong business case for itself, according to the report.

Thirty seven per cent of owners project a spike in occupancy rates, 32 per cent expect improved tenant retention, 26 per cent expect improved lease rates and 13 per cent forecast a higher return on investment.

The median payback period for investment on a new green building is eight years, according to the report.

According to Mueller, owners and developers who are repeat green builders usually maintain a positive experience, but it’s the first timers that need to be shown the right steps in pursuing green building.

“If you’re an owner doing it for the first time, you have to be diligent, you have to be prudent to select the right consultants,” he said. “You have to do your due diligence and we certainly will be at the council to help first-time users to apply the LEED program and to make sure they have a positive experience.”<

Deep Energy Retrofits–A Necessity for Old Buildings

“Studies show that focusing on energy efficiency and usage from buildings and homes is still a more effective and less expensive choice than investing in new energy sources. After all, on a global scale, residential and commercial buildings account for 40% of total final energy consumption, from HVAC, lighting, water heating, and further building functions, so a push on diminishing wastefulness in this area will have a much greater and more immediate effect than focusing on other, less sure practices (such as building wind turbines). At the moment, revamping a building to be more energy efficient will have instant effects on savings and efficiency, which is where retrofitting comes into play. Retrofitting involves giving older buildings, which often have out-of-date heating, cooling and lighting systems, an internal and external update. The entire process isn’t cheap, but it’s far less pricey than starting from the bottom up, and causes far less havoc for businesses who can’t afford to move offices while construction is taking place.”

via From Guest Blogger Blake Meredith: Deep Energy Retrofits–A Necessity for Old Buildings.