Energy Efficiency, Smart Buildings & Wireless Control Systems

Energy efficient technology and services for the building sector will double by 2022, according to a new report …

Source: www.climatecontrolnews.com.au

>”[…] Since buildings account for a large portion of national energy consumption, most of the governments in the Asia Pacific region have taken steps to promote energy management and energy efficiency in both new construction and existing buildings. […]

“With about 40 per cent of the world’s building stock, Asia Pacific represents a major portion of global real estate,” he said.

“Growing concerns about air pollution in Chinese cities, in particular, is expected to further drive investment in energy efficiency technologies to reduce China’s demand for coal-based electricity.

“The market for energy efficient buildings is expected to double in the next eight years, reaching nearly $92 billion in annual revenue by 2022.”

The largest segment of the energy efficient buildings market in Asia Pacific today is advanced lighting […]

“The commercial buildings sector in the region will experience a significant increase in the adoption of these products in the coming years,” Bloom said. Entitled“Energy Efficient Buildings: Asia Pacific”, the report examines the trends for energy efficient building technology and services in the Asia Pacific region.

It covers three main areas of technology – HVAC, energy efficient lighting, and commercial building automation – as well as the energy service company (ESCO) sector.

The convergence of building automation, information technology, and wireless communications is another area of growth identified by Navigant Research.

A separate report examines the state of the global wireless building controls industry, including global market forecasts for wireless node unit shipments and revenue through 2023.

Wireless controls can be used to link devices found in a variety of building systems, including heating, ventilating, and air conditioning (HVAC), lighting, fire and life safety, and security and access.

In addition, they often provide networked control in buildings or areas where wired controls are simply too challenging or expensive to install.

Worldwide revenue from wireless control systems for smart buildings is expected to grow from $97 million annually in 2014 to $434 million in 2023.  […]

While the adoption and deployment of wireless systems based on standard technologies and protocols, such as Wi-Fi, Zigbee, and EnOcean, are increasing, most wireless devices and control networks used today utilize proprietary, vendor-specific wireless communications technology.

That is likely to change as the demand for interoperability grows, according to the “Wireless Control Systems for Smart Buildings” report. “<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Advertisements

Lighting Controls in Buildings, Demand Management and Microgrid Development

Lighting control systems can help microgrids shed load, improve demand response, use resources efficiently, and offer greater overall reliability.

Source: energyefficiencymarkets.com

>” […] Lighting Control Facilitates Load-shed Strategies

Load shed, or the ability to quickly reduce electricity use during peak periods, is critical to ensuring microgrid reliability. Because lighting uses a considerable proportion of building peak electrical loads (30% of peak electricity),1 and because reduced light levels deliver immediate reductions in electricity, lighting control is one of the simplest and most predictable demand response solutions.

The reduction of lighting load also provides a reduction in HVAC cooling load during the summer, which is the most common peak electrical period.  Furthermore, since dimming is typically unobtrusive when it is executed over a period of time (as little as 10 seconds), lighting control is a viable option for immediate emergency response.

Dimming as a load shed strategy is highly effective because the human visual system has the ability to accommodate a wide variety of light levels with minimal effect on the occupants2,3.  When a demand reduction is required a gradual dimming of electric lighting can reduce light levels by 35 percent before 20 percent of the occupants attempt to intervene.  Response time is essentially instantaneous, typically has little impact on occupant comfort, and demand savings from lighting are more predictable than those from HVAC response.

Light management systems have the capability to automatically trigger a demand response event from a utility signal or from time clock scheduling. Therefore, a predictable and effective demand response strategy can be automatically implemented while going virtually unnoticed to the building occupants.

Energy codes, standards, and green building certifications such as ASHRAE (American Society of Heating, Refrigerating, and Air Conditioning Engineers) 90.1, IECC (International Energy Conservation Code), California Title 24, ASHRAE 189, IgCC (International Green Construction Code), or LEED (Leadership in Energy and Environmental Design) now include lighting controls as a part of a whole-building energy strategy.

There are subtle differences for each code/standard/certification, but some general requirements and/or credits include: required lighting control for most areas (manual or automatic), automatic lighting shut-off, some automatic receptacle shut-off, daylight controls for daylit spaces, automatic shut-off of exterior lighting during daytime hours, and various levels of occupancy/vacancy control. As a result of buildings updating their basic lighting control infrastructure to meet code, they are increasingly becoming capable of connecting to a microgrid, without the need for additional significant investments.

[…]”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Unleash Active Daylighting Benefits for Your Green Building with Ciralight SunTracker | Eco-Business.com

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Green buildings in tropical regions such as Indonesia will benefit from active daylighting.

Duane Tilden‘s insight:

Now, what is active daylighting?

95% of available systems are passive in nature – meaning they use static, non-moving/tracking systems unable to adjust for the sun’s angle throughout the day; creating uneven lighting, roaming hot spots, and obtrusive glare.

Active Daylighting is a system that mechanically tracks the sun throughout the day and redirects sunlight inside buildings at an intensity that allows artificial lighting to be turned off. Ciralight’s active daylighting system significantly outperforms passive systems when comparing the amount of daylight directed into a building; upwards of 300% more.

See on www.eco-business.com