LA’s Urban Heat Island Effect Alters Weather

Over the last 60 years urban areas of Southern California have lost significant amounts of fog due to the heat created by paved roads and buildings.

Source: www.scpr.org

>” A new study reports that coastal fog in Southern California is on the decline, especially in heavily urbanized areas.

In particular, Los Angeles saw a 63 percent decrease over the last 60 years.

You can blame the heat island effect created by city streets and buildings, said the study’s author Park Williams of Columbia University’s Lamont-Doherty Earth Observatory in New York.

Fog may be a nuisance for drivers, but according to Williams, it also plays a crucial role in hydrating many costal ecosystems.

These include mountains with coastal forests and hillsides covered in chaparral, which easily burns when conditions are too dry.

“They all receive water directly from fog and benefit from the shading of these clouds,” Williams said.

In fact, he noted that in some parts of Southern California, fog may provide plants with almost as much water as rain does. Williams says this loss of coastal fog could impact the regional environment.

Fog typically forms when the air is cool enough for clouds to condense close to ground level. This often happens at night and in the early morning.

However, Williams said this process is being upset by all the concrete in urban areas, which absorbs heat in the day and slowly releases it over night, raising temperatures.

“When you increase the temperature of the surface of the Earth, then you essentially need to go higher up into the atmosphere before [it] is cool enough to promote condensation,” Williams explained.

The end result is that as cities heat up, clouds rise and fog disappears.

Data for the study came from the detailed logs of the 24 coastal airports between Santa Barbara and San Diego.

“Of course airports have been collecting really good data on clouds because the presence of clouds and their hight in the atmosphere really affects air travel,” he said.

Many of these logs had hourly updates on cloud height, some dating back to the 1940s.

Using this information, Williams and his colleagues determined that the greatest loss of fog occurred in Ontario where there was a nearly 90% decrease over the last 60 years.

Other airports such as LAX, Burbank’s Bob Hope, Long Beach Airport and John Wayne Airport in Orange County also saw a considerable decrease in the average amount of fog.

However, less urban areas like Santa Barbara and the undeveloped the Channel Islands remained quite misty.

Williams says this trend is concerning because man-made climate change is expected to heat things up even more in the future.

Coastal fog can help cool an area down but as cities continue to bake, they will gather and emit even more heat, driving away even more fog.

“That can then feedback until the cloud layer is eaten away entirely in the daytime,” he said.

Soon, Williams hopes to explore how much water fog provides Southern California in general to see whether the continued loss of these low clouds could dry out the region even more.

His current paper appears in the journal Geophysical Research Letters.”<

 

See on Scoop.itGreen & Sustainable News

Three Common Mistakes in Wireless Systems Design for Buildings

Although cellular and WiFi networks are not required by code, they are crucial for communication. More than 400,000 wireless E-911 calls are made every day…

 

Image Source:  http://bit.ly/1EqvCDv

Source: www.facilitiesnet.com

>” MISTAKE 1: Thinking it’s someone else’s problem.

Don’t let your architect avoid the issue. Design a building with adequate wireless coverage for public safety, cellular, and WiFi. […] WiFi networks are also widely used for Internet traffic and to support building management systems (BMS), Smart Grid, point of sales, audio visual, security, and more. The impact of wireless devices is only expected to increase. Mobile devices are expected to account for 61 percent of worldwide Internet traffic by 2018, compared to 39 percent from wired devices, according toCisco.

MISTAKE 2: Confusion.

Confusing the types of wireless technologies available and/or facility requirements is another pitfall. You don’t want to plan for one type and learn later that technology for common functions is missing. Technologies have different requirements for power, spacing between devices, type of cables, head-end requirements, etc. Therefore, a key factor is to understand each technology thoroughly so it can be planned and implemented properly.

To put it briefly, there are two major wireless technologies — WSP, which are your wireless carriers networks (AT&T, T-mobile ,Verizon, etc.), and WiFi technology, which is a wireless local area network (WLAN) based on Institute of Electrical and Electronics Engineers (IEEE) 802.11 standards.

Both of these transmit via radio frequencies. WiFi (WLAN), however, uses an unlicensed spectrum that transmits at frequencies 2.4GHz and 5 GHz, which are considerably higher frequencies than used for cellular service, which is on a licensed spectrum transmitting within 698MHz-2.7GHz.

MISTAKE 3: Bad budgeting.

Often, contractors develop their budget based on square footage, but wireless isn’t so simple. The price can vary significantly based on the complexity of the needs, the supporting frequencies, coverage area, number of users, and more. By developing preliminary wireless design, IT consultants can provide the owner/operators with a more accurate cost.

Regardless of the facility, it’s no longer a matter of if wireless will be required, just a question of whether you want to plan early before you build, or pay a premium later. IT consultants can help facility managers plan, select the best wireless options to meet end-user needs, and stay to up-to-date with local codes (where required). Furthermore, an IT consultant can better develop a realistic wireless budget for the owner and provide the architect-engineer-construction team with infrastructure requirements, such as pathways, telecom room sizes and locations, power, and cooling, without sacrificing the architect’s vision. Generically speaking, the fee for an IT consultant is insignificant to the overall project cost, and may ultimately save the owner money and headache. Be prepared for what’s to come. Overlooking this need early can often cause a major regret later.

Gislene D. Weig, electrical engineer, RCDD, is a senior consultant at PlanNet Consulting, where her core business involves U.S. and Latin American markets focused on large-scale projects that include voice/data, wired and wireless communication systems, and data network design. She can be reached at gweig@plannet.net.”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Microsoft Uses Big Data To Manage Buildings and Facilities

MicrosoftCampus

“My initial expectation was that we would see the return on investment in terms of driving down our energy costs, and we have seen that,” says Pittenger, to whom Smith reports. “What wasn’t part of my expectations was the gains we would have in operational efficiencies and our abilities to do repairs and maintenance much, much better and much, much smarter.”

Source: www.facilitiesnet.com

Image:  http://news.microsoft.com/2009/11/23/california-coding-microsoft-campus-in-silicon-valley-turns-10/

>” […] Over those 125 buildings on the main Microsoft campus, there are more than 30,000 building systems components — assets, in Smith’s terms — and more than 2 million points where building systems ranging from HVAC to lighting to power monitoring are connected to sensors. In a 24-hour period, those systems produce half a billion data transactions. Each one is small, but when you’re talking about half a billion of something, all those 1s and 0s add up pretty quickly.

But what’s important is being able to do something with those 1s and 0s, which Microsoft could not do until recently because of the mess of systems involved, says Jim Sinopoli, managing principal, Smart Buildings, who helped set up the software pilot program.

“You have an opportunity, if you’re building a new campus or a new building, to really start with a clean slate,” he says. “But you go in these existing buildings and you generally will come upon some unforeseen obstacles.”

The project turned out to be a relatively easy sell. First, Pittenger’s background is financial, so being able to show a strong ROI was a definite plus for Smith, because his boss understands exactly what that means when it comes time to ask for funding. Second, facilities management at Microsoft benefits from a company culture that considers every department to be a key player.

“(CEO) Steve Ballmer likes to say, ‘There are no support organizations at Microsoft,'” Pittenger says. “Everybody is fundamental to the core mission of the company. And we feel that way.”

After gaining approval, the first step was deciding how those obstacles would be overcome. Smith and his team began by writing out 195 requirements for the new way of operating and what their ultimate tool would be able to do. Then they proceeded to look around for an off-the-shelf solution that would be able to do all those things — and failed to find one. So, they built it.

More specifically, they worked with three vendors in a pilot program, encompassing 2.6 million square feet, to build an “analytics blanket” of fault detection algorithms that is layered on top of the different building management systems and reports back to the operations center. If Building 17 and Building 33 have different building management systems, those systems may not be able to talk to each other or provide data to a single reporting system in the operations center. But they can talk to the analytics blanket, which can take the information from every building and combine it into a single output in the operations center. It’s not a replacement for the BMS; instead, it’s adding on functionality that enhances the benefits of the existing BMS.”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Net Zero Case Study: Bullitt Center – Green Materials

The Bullitt Center in Seattle, Washington, is one of the most self-sufficient buildings on the planet.  It is net zero energy and, after the water reuse system is approved by city authorities, net zero water.  Net zero means that the building uses the same amount as it creates or generates – it is self-sufficient.

Source: greenbuildingelements.com

>”[…]

Healthy Green Materials

The Living Building Challenge requires projects to avoid as many of the chemicals and substances that are found on the Red List as possible.  These substances have been recognized by government agencies, such as the US Environmental Protection Agency, the European Union Commission, and the State of California, as potentially harmful to human or animal life on Earth.  Not all of the substances can be avoided, though, due to the lack of availability of materials that do not contain them.

The Bullitt Center team avoided over 360 known chemicals on this list.  Some were easy to avoid, as alternatives were readily available.  The team also worked with suppliers to create products that met their requirements, changing the way the products were made and making them available to others.

Most plumbing valves, even those made of brass and bronze, contain up to 7% lead.  Lead free valves, with an allowable lead content of only 0.25%, were used in both the potable and non-potable water systems, including fire sprinklers.Phthalates are commonly used in PVC and other plastic products.  A high-performance water barrier company performed 6 months of research to develop a product that did not contain phthalates, just for the Bullitt Center project.  The new product has now replaced the original version going forward.  Dioxins are a by-product of the manufacture, combustion, and disposal of products containing chlorine, most notably PVC products.  Couplings for no-hub ductile iron pipe are commonly made with neoprene, which contains chlorine.  The team worked with the manufacturer to special order couplings made of EPDM (ethylene propylene diene monomer) rubber.  The electrician was able to find electrical wire not coated in PVC that met code standards.  The fiberglass insulation in the project is held together by a plant-based polymer, not the usual one that contains formaldehyde.

Certified Wood

The Bullitt Center is a wood-framed structure.  Because of its location and the importance of the timber industry in the Pacific Northwest, the project team decided this was the best choice for the project.  100% of the lumber in the building has been harvested from anForest Stewardship Council (FSC) certified source.  The project was also recognized as the only commercial project to receive the Forest Stewardship Council Project Certification, in recognition of responsible forest products use throughout the building.

Local Sourcing

Perhaps the greatest story about green materials and the Bullitt Center involves the curtain wall (window) system.  Due to the high performance needs of the project, only one product could be used, and it was only manufactured in Europe.  A Washington company partnered with the European manufacturer to gain the knowledge to manufacture and install the system in the US.   The Washington company flew their employees over to find out how to make and install the system, and a licensing agreement was reached.  Now this high performance system is available in the US for future projects to use.

[…]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Net Zero Building Nears Completion in Edmonton

the mosaic centre for conscious community and commerce is nearly ready for occupancy, which could make it the most northerly net-zero structure on the planet.

Source: www.journalofcommerce.com

>” […] The Edmonton centre’s designers and builders are hoping that others can learn from the project that sustainable design doesn’t have to be costly or time consuming – so much so that they have made the contract, calculations and drawings available to anyone.

The City of Edmonton said the Mosaic Centre will be the world’s most northerly commercial building to achieve net zero status, the city’s first designated LEED platinum building, the first in Alberta to be petal certified by the Living Building Challenge and Canada’s first triple bottom line commercial building.

Once completed, the new 30,000 square foot building will include  photovoltaic panels that will cover much of the roof.

It will also have LED lighting designed with a time-clock/daylight controller to meet minimum light levels and a geo-exchange system which will draw heat in winter and coolant in summer.

The 32 bore hole geothermal system reduced the size of the system by 40 kW, saving about $150,000.

It was built 25 per cent ahead of schedule and five per cent under budget.

HKA architect Vedran Skopac, who worked on the project, said it was done to prove to the industry that complex, sustainable buildings can be delivered on time, on budget and without animosity between the parties.

He said the key to this all started with using Integrated Project Delivery (IPD).

The model emphasizes collaboration at an early stage and encourages all the participants to use their talents and insights throughout the different stages for best results.

“It goes all the way down to the end of the line of the tradesmen,” Skopac said.

“We invested so much in designing the process, and training and making everyone a leader.”

Skopac said a major influence on designing the actual structure was creating collision spaces, or places where building residents would be forced to meet and interact.

Skopac also wanted to influence sustainable behavior, like making windows easy to operate and open rather than using air conditioning, and making natural light penetrate deep into the building rather than encourage residents to turn on lights. […]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Life-Cycle Cost Analysis (LCCA) | Whole Building Design Guide

Life-cycle cost analysis (LCCA) is a method for assessing the total cost of facility ownership. It takes into account all costs of acquiring, owning, and disposing of a building or building system. LCCA is especially useful when project alternatives that fulfill the same performance requirements, but differ with respect to initial costs and operating costs, have to be compared in order to select the one that maximizes net savings.

Source: www.wbdg.org

DESCRIPTION

A. Life-Cycle Cost Analysis (LCCA) Method

The purpose of an LCCA is to estimate the overall costs of project alternatives and to select the design that ensures the facility will provide the lowest overall cost of ownership consistent with its quality and function. The LCCA should be performed early in the design process while there is still a chance to refine the design to ensure a reduction in life-cycle costs (LCC).

The first and most challenging task of an LCCA, or any economic evaluation method, is to determine the economic effects of alternative designs of buildings and building systems and to quantify these effects and express them in dollar amounts.

lcca_2

Viewed over a 30 year period, initial building costs account for approximately just 2% of the total, while operations and maintenance costs equal 6%, and personnel costs equal 92%.
Graphic: Sieglinde Fuller
Source: Sustainable Building Technical Manual / Joseph J. Romm,Lean and Clean Management, 1994.

B. Costs

There are numerous costs associated with acquiring, operating, maintaining, and disposing of a building or building system. Building-related costs usually fall into the following categories:lcca_5

Initial Costs—Purchase, Acquisition, Construction Costs

Fuel Costs,

Operation, Maintenance, and Repair Costs

Replacement Costs; Residual Values—Resale or Salvage Values or Disposal Costs, Finance Charges—Loan Interest Payments

Non-Monetary Benefits or Costs

Only those costs within each category that are relevant to the decision and significant in amount are needed to make a valid investment decision. Costs are relevant when they are different for one alternative compared with another; costs are significant when they are large enough to make a credible difference in the LCC of a project alternative. All costs are entered as base-year amounts in today’s dollars; the LCCA method escalates all amounts to their future year of occurrence and discounts them back to the base date to convert them to present values. […]

Energy and Water Costs

Operational expenses for energy, water, and other utilities are based on consumption, current rates, and price projections. Because energy, and to some extent water consumption, and building configuration and building envelope are interdependent, energy and water costs are usually assessed for the building as a whole rather than for individual building systems or components.

Energy usage: Energy costs are often difficult to predict accurately in the design phase of a project. Assumptions must be made about use profiles, occupancy rates, and schedules, all of which impact energy consumption. At the initial design stage, data on the amount of energy consumption for a building can come from engineering analysis or from a computer program such as eQuest.ENERGY PLUS (DOE), DOE-2.1E and BLAST require more detailed input not usually available until later in the design process. Other software packages, such as the proprietary programs TRACE (Trane), ESPRE (EPRI), and HAP (Carrier) have been developed to assist in mechanical equipment selection and sizing and are often distributed by manufacturers.

When selecting a program, it is important to consider whether you need annual, monthly, or hourly energy consumption figures and whether the program adequately tracks savings in energy consumption when design changes or different efficiency levels are simulated.  […]

Operation, Maintenance, and Repair Costs

(Courtesy of Washington State Department of General Administration)

Non-fuel operating costs, and maintenance and repair (OM&R) costs are often more difficult to estimate than other building expenditures. Operating schedules and standards of maintenance vary from building to building; there is great variation in these costs even for buildings of the same type and age. It is therefore especially important to use engineering judgment when estimating these costs.

Supplier quotes and published estimating guides sometimes provide information on maintenance and repair costs. Some of the data estimation guides derive cost data from statistical relationships of historical data (Means, BOMA) and report, for example, average owning and operating costs per square foot, by age of building, geographic location, number of stories, and number of square feet in the building. The Whitestone Research Facility Maintenance and Repair Cost Reference gives annualized costs for building systems and elements as well as service life estimates for specific building components. The U.S. Army Corps of Engineers, Huntsville Division, provides access to a customized OM&R database for military construction (contact: Terry.L.Patton@HND01.usace.army.mil).

Replacement Costs

The number and timing of capital replacements of building systems depend on the estimated life of the system and the length of the study period. Use the same sources that provide cost estimates for initial investments to obtain estimates of replacement costs and expected useful lives. A good starting point for estimating future replacement costs is to use their cost as of the base date. The LCCA method will escalate base-year amounts to their future time of occurrence.

Residual Values

The residual value of a system (or component) is its remaining value at the end of the study period, or at the time it is replaced during the study period. Residual values can be based on value in place, resale value, salvage value, or scrap value, net of any selling, conversion, or disposal costs. As a rule of thumb, the residual value of a system with remaining useful life in place can be calculated by linearly prorating its initial costs. For example, for a system with an expected useful life of 15 years, which was installed 5 years before the end of the study period, the residual value would be approximately 2/3 (=(15-10)/15) of its initial cost.

Other Costs

Finance charges and taxes: For federal projects, finance charges are usually not relevant. Finance charges and other payments apply, however, if a project is financed through an Energy Savings Performance Contract (ESPC) or Utility Energy Services Contract (UESC). The finance charges are usually included in the contract payments negotiated with the Energy Service Company (ESCO) or the utility.

Non-monetary benefits or costs: Non-monetary benefits or costs are project-related effects for which there is no objective way of assigning a dollar value. Examples of non-monetary effects may be the benefit derived from a particularly quiet HVAC system or from an expected, but hard-to-quantify productivity gain due to improved lighting. By their nature, these effects are external to the LCCA, but if they are significant they should be considered in the final investment decision and included in the project documentation. See Cost-Effective—Consider Non-Monetary Benefits.

To formalize the inclusion of non-monetary costs or benefits in your decision making, you can use the analytical hierarchy process (AHP), which is one of a set of multi-attribute decision analysis (MADA) methods that consider non-monetary attributes (qualitative and quantitative) in addition to common economic evaluation measures when evaluating project alternatives. ASTM E 1765 Standard Practice for Applying Analytical Hierarchy Process (AHP) to Multi-attribute Decision Analysis of Investments Related to Buildings and Building Systems published by ASTM International presents a procedure for calculating and interpreting AHP scores of a project’s total overall desirability when making building-related capital investment decisions. A source of information for estimating productivity costs, for example, is the WBDG Productive Branch.  [….]

D. Life-Cycle Cost Calculation

After identifying all costs by year and amount and discounting them to present value, they are added to arrive at total life-cycle costs for each alternative:

LCC =  I + Repl — Res + E + W + OM&R + O

LCC = Total LCC in present-value (PV) dollars of a given alternative
I = PV investment costs (if incurred at base date, they need not be discounted)
Repl = PV capital replacement costs
Res = PV residual value (resale value, salvage value) less disposal costs
E = PV of energy costs
W = PV of water costs
OM&R = PV of non-fuel operating, maintenance and repair costs
O = PV of other costs (e.g., contract costs for ESPCs or UESCs)

E. Supplementary Measures

Supplementary measures of economic evaluation are Net Savings (NS), Savings-to-Investment Ratio (SIR), Adjusted Internal Rate of Return (AIRR), and Simple Payback (SPB) or Discounted Payback (DPB). They are sometimes needed to meet specific regulatory requirements. For example, the FEMP LCC rules (10 CFR 436A) require the use of either the SIR or AIRR for ranking independent projects competing for limited funding. Some federal programs require a Payback Period to be computed as a screening measure in project evaluation. NS, SIR, and AIRR are consistent with the lowest LCC of an alternative if computed and applied correctly, with the same time-adjusted input values and assumptions. Payback measures, either SPB or DPB, are only consistent with LCCA if they are calculated over the entire study period, not only for the years of the payback period.

All supplementary measures are relative measures, i.e., they are computed for an alternative relative to a base case.  […]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Hospital Retrofits Heating and Domestic-Hot-Water Systems For Substantial Energy Savings

At Holton Community Hospital in rural Holton, Kan., two cast-iron atmospheric boilers and three gas-fired water heaters that had been in place for nearly 20 years were operating inefficiently.

Source: hpac.com

>” […] Based on the boiler-plate outputs and firing rates of the existing boilers and domestic water heaters at design conditions and outputs, three Knight XL heating boilers with inputs of 500,000 Btuh, two 119-gal. Squire indirect water heaters, and a 119-gal. buffer tank were selected. […]

On one of the Knight XL heating boilers, a Grundfos MAGNA3 variable-speed circulator pump was installed. The boiler controls the speed of the pump using the built-in Smart System. When the boiler modulates down, the pump slows to maintain a constant temperature rise across the heat exchanger at all times. Reducing pump revolutions reduces power consumption tremendously.

Monitoring equipment was placed on both the lead boiler and the member boiler not dedicated to domestic water. The lead boiler had the MAGNA3 40-80 F variable-speed circulator pump, while the member boiler used the UPS 43-100 F constant-speed circulator pump.

For analysis, the team compared two similar days, March 20 and 21, at a time when only the two monitored boilers would be running. At that time, domestic water use would be unlikely, reducing the chance the third boiler would fire and affect the measured values.Figure 1 shows the power consumed by the constant-speed circulator and the variable-speed circulator when each was the lead.

Lochinvar Chart2_AMD

FIGURE 1. Pump power consumption.

 

 

Pump-speed modulation resulted in significant energy savings. The MAGNA3 reached a maximum power usage of 270 W, but slowed to a minimum of just over 50 W, while the UPS ran at a continuous 365 W. Over the course of the hour, the MAGNA3 averaged 156 W.

With Smart System, the boiler adjusts the flow through its heat exchanger to control delta-T as well as system median temperature. Delta-T across the boiler is constant, resulting in enhanced building comfort, increased heat transfer, and electricity savings.

In January 2014, Holton Community Hospital spent a total of $1,207.31 on gas and electricity. In comparison, the hospital’s gas and electricity bills for January 2013 were $2,805.41—more than twice as much. […]”<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Energy Efficiency in Buildings – How VFD’s Save Energy

Have you wondered why Pumps and Fans are such a great opportunity to save energy using variable speed drives? ABB can help you estimate your energy savings a…

Source: www.youtube.com

>”  Efficiencies of Motors and Drives

The full load efficiency of AC electric motors range from around 80% for the smallest motors to over 95% for motors over 100 HP. The efficiency of an electric motor drops significantly as the load is reduced below 40%. Good practice dictates that motors should be sized so that full load operation corresponds to 75% of the rated power of the motor. […]

The efficiency of an electric motor and drive system is the ratio of mechanical output power to electrical input power and is most often expressed as a percentage.

Motor System Efficiency =Output MechanicalInput Electrical x 100%

A VFD is very efficient. Typical efficiencies of 97% or more are available at full load. At reduced loads the efficiency drops. Typically, VFDs over 10 HP have over 90% efficiency for loads greater than 25% of full load. This is the operating range of interest for practical applications. […]

The system efficiency is lower than the product of motor efficiency and VFD efficiency because the motor efficiency varies with load and because of the effects of harmonics on the motor.

Unfortunately, it is nearly impossible to know what the motor/ drive system efficiency will be, but because the power input to a variable torque system drops so remarkably with speed, an estimate of the system efficiencies is really all that is needed.

When calculating the energy consumption of a motor drive system, estimated system efficiency in the range of 80-90 % can be used with motors ranging from 10 HP and larger and loads of 25% and greater.

In general, lower efficiency ranges correspond to small motor sizes and loads and higher efficiency ranges corresponds to larger motors and loads.

b. Comparison with Conventional Control Methods

Estimating Energy Savings

Fans and pumps are designed to be capable of meeting the maximum demand of the system in which they are installed.

However, quite often the actual demand could vary and be much less than the designed capacity. These conditions are accommodated by adding outlet dampers to fans or throttling valves to pumps.

These are effective and simple controls, but severely affect the efficiency of the system.

Using a VFD to control the fan or pump is a more efficient means of flow control than simple valves or inlet or outlet dampers. The power input to fans and pumps varies with the cube of the speed, so even seemingly small changes in speed can greatly impact the power required by the load. […]

In addition to major energy savings potential, a drive also offers built-in power factor correction, better process control and motor protection. […]”<*

* Extracted from:  http://www.nrcan.gc.ca/energy/products/reference/15385

See on Scoop.itGreen Building Design – Architecture & Engineering

Reduce Costs and Energy Use Through Elevator Efficiency Upgrades

Buying or installing elevator equipment that promotes low-energy consumption can help save money and reduce a building’s environmental footprint.

Source: highrisefacilities.com

>”As part of a building’s overall energy usage, elevators consume up to 10 percent of the total energy in a building. From an environmental standpoint, the most significant impact elevators have is the electricity use while the elevator is in service. Therefore, buying or installing elevator equipment that promotes low-energy consumption can help save money and reduce a building’s environmental footprint.

Buildings and Energy

One way to measure overall energy usage is by calculating the power factor (PF) of the building and/or its energy-consuming devices. These are generally motors, transformers, high intensity discharge (HID) lighting, fluorescent devices or other pieces of equipment that require magnetism to operate. […]

Power factor is a measurement of electrical system efficiency in the distribution and consumption of electrical energy. It is the percentage of the amount of electric power being provided that is converted into real work and expressed as a number between zero and one. For example, if a device had a .70 PF, then 70 percent of the power that the utilities generate to run the device is actually being converted into real work. The lower the PF number, the poorer the PF efficiency. The higher the PF number, the greater the PF efficiency.

In some areas, utilities use PF in the computation of the demand charge. A low PF for a customer’s facility could result in a demand charge penalty that increases the monthly demand cost. This is where newer, more innovative elevator control systems can contribute to lower energy consumption and improve a buildings’ overall PF.

Because of electrical losses caused during generation, distribution and consumption of electricity, the amount of power needed to be provided by a utility company will be greater than the amount for which they get paid by consumers.

Comparative Analysis

During a recent modernization of two identical traction elevators, before and after energy data was collected. The original, first generation silicon controlled rectifier (SCR), direct current (DC) motor control was measured using a series of fixed run patterns and known loads. After modernization, the new insulated-gate bipolar transistor (IGBT)-based alternating current (AC) motor control for a permanent magnet synchronous motor system was measured using the same run patterns and known loads.

The SCR-DC system used far more energy (watts/hour) to move the exact same load through the exact same distance compared to the IGBT-based permanent magnet AC control (Chart 1). In fact, in these six load tests, the IGBT-based system used less than half the energy. An incredible 383 percent increase in power factor of the IGBT-based system compared to the SCR-DC system (Chart 2). That means more of the energy consumed was being converted into real work with less waste in terms of heat and magnetism.

These kinds of energy usage reductions and PF increases are becoming even greater as newer elevator technology gets incorporated into buildings (Chart 3).

It’s easy to see how reducing energy consumption and increasing power rating can benefit the building’s owners and operators. However, these same improvements benefit the community as well. The electricity not being used in one building can be used by other customers — allowing utilities to meet the community’s electricity demand without increasing electricity generation. That translates into no rolling blackouts or brownouts, no new power plants being built and an overall smaller environmental footprint.

Hydraulic Elevators

Up to this point, traction elevator technology was discussed where wire ropes pull the elevator from above the car. In contrast, the hydraulic elevator pushes the elevator cab through the hoistway. The way a hydraulic system works is a piston and cylinder are sunk in the ground below the elevator. To go up, a pump forces oil from an oil tank reservoir into the cylinder — causing the piston to rise, making the elevator cab go up. To go down, gravity and the weight of the cab pushes the piston down into the cylinder and forces the hydraulic oil back into the tank reservoir. Historically, hydraulic elevators (or hydros) have been installed where either the building had fewer floors (typically six to eight) or lower material and installation costs were a consideration (when compared to a traction elevator). […]

Considerations Beyond the Hoistway

Energy reduction of a building’s elevators can also impact heating, ventilation and air conditioning (HVAC) systems. Quite often, elevator machine rooms are air conditioned to support removal of the heat generated by elevator control systems. Motor-generator-based elevator controls create a tremendous amount of heat; the effect is multiplied when several systems are contained in the same machine room.

Additionally, a check should be made of the shut-down timer typically employed with motor-generators (M-G) sets. Is it working? Does the M-G set turn off after a set period of time? Or has the timer failed and no longer shuts down the motor-generator, wasting energy as the M-G set turns but no work is being done by the elevator?

The elevator cab’s lighting can impact both the energy consumption and HVAC systems. A recent survey conducted of a 34-story high rise office building with 18 elevators showed the cab lights were on 24-hours a day. There are 28 incandescent light bulbs per elevator. That worked out to 100-amps of power being consumed continuously. By replacing the incandescent bulbs with compact fluorescents, energy consumption could be cut to 30 percent. And if a 24-hour clock timer is added to shut the lights off at midnight, even more energy could be saved.

Reducing Energy Consumption

Finally, if you’re considering an elevator modernization, call your electric provider or visit their Website to explore the possibility of energy rebates from the local utility provider. It is quite common for utilities to offer dollar incentives for specific building improvements that reduce energy consumption and improve PF.

There are various benefits to building owners and facility managers who lower their power consumption and understand how power factor helps reduce the overall cost of energy, particularly the energy used to run the elevators in their buildings. These benefits go beyond the elevators themselves to include benefits derived from HVAC systems, cab lighting and energy consumed when the elevators are not moving that affect the monthly utility bill.”

 

See on Scoop.itGreen Energy Technologies & Development

Energy Efficiency, the Invisible fuel

THE CHEAPEST AND cleanest energy choice of all is not to waste it. Progress on this has been striking yet the potential is still vast. Improvements in energy…

Source: www.economist.com

>”[…] The “fifth fuel”, as energy efficiency is sometimes called, is the cheapest of all. A report by ACEEE, an American energy-efficiency group, reckons that the average cost of saving a kilowatt hour is 2.8 cents; the typical retail cost of one in America is 10 cents. In the electricity-using sector, saving a kilowatt hour can cost as little as one-sixth of a cent, says Mr Lovins of Rocky Mountain Institute, so payback can be measured in months, not years.

The largest single chunk of final energy consumption, 31%, is in buildings, chiefly heating and cooling. Much of that is wasted, not least because in the past architects have paid little attention to details such as the design of pipework (long, narrow pipes with lots of right angles are far more wasteful than short, fat and straight ones). Energy efficiency has been nobody’s priority: it takes time and money that architects, builders, landlords and tenants would rather spend on other things.

In countries with no tradition of thrifty energy use, the skills needed are in short supply, too. Even the wealthy, knowledgeable and determined Mr Liebreich had trouble getting the builders who worked on his energy-saving house to take his instructions seriously. Painstakingly taping the joins in insulating boards, and the gaps around them, seems unnecessary unless you understand the physics behind it: it is plugging the last few leaks that brings the biggest benefits. Builders are trained to worry about adequate ventilation, but not many know about the marvels of heat exchangers set in chimney stacks. […]

One answer to this market failure is to bring in mandatory standards for landlords and those selling properties. Another involves energy-service companies, known as ESCOs, which guarantee lower bills in exchange for modernisation. The company can develop economies of scale and tap financial markets for the upfront costs. The savings are shared with owners and occupiers. ESCOs are already a $6.5 billion-a-year industry in America and a $12 billion one in China. Both are dwarfed by Europe, with €41 billion ($56 billion) last year. Navigant Research, the consultancy, expects this to double by 2023.

That highlights one of the biggest reasons for optimism about the future of energy. Capital markets, frozen into caution after the financial crash of 2008, are now doing again what they are supposed to do: financing investments on the basis of future revenues. The growth of a bond market to pay for energy-efficiency projects was an encouraging sign in 2014, when $30 billion-40 billion were issued; this year’s total is likely to be $100 billion.

“The price of fossil fuels will always fluctuate. Solar is bound to get cheaper”

Solar energy is now a predictable income stream drawing in serious money. A rooftop lease can finance an investment of $15,000-20,000 with monthly payments that are lower than the customer’s current utility bill. SolarCity, an American company, has financed $5 billion in new solar capacity, raising money initially from institutional investors, including Goldman Sachs and Google, but now from individual private investors—who also become what the company calls “brand ambassadors”, encouraging friends and colleagues to install solar panels too.

The model is simple: SolarCity pays for the installation, then bundles the revenues and sells a bond based on the expected future income stream. Maturities range from one to seven years. The upshot is that the cost of capital for the solar industry is 200-300 basis points lower than that for utilities. […]”<

See on Scoop.itGreen & Sustainable News