Google obtains a Renewable Energy Power Purchase Agreement in Texas

See on Scoop.itGreen Energy Technologies & Development

Duane Tilden‘s insight:

>The structure of this agreement is similar to our earlier commitments in Iowa and Oklahoma. Due to the current structure of the market, we can’t consume the renewable energy produced by the wind farm directly, but the impact on our overall carbon footprint and the amount of renewable energy on the grid is the same as if we could consume it. After purchasing the renewable energy, we’ll retire the renewable energy credits (RECs) and sell the energy itself to the wholesale market. We’ll apply any additional RECs produced under this agreement to reduce our carbon footprint elsewhere.<

See on googleblog.blogspot.ca

Boston Leads Ranking of Energy-Efficient U.S. Cities by ACEEE

See on Scoop.itGreen & Sustainable News

A new ranking highlights Boston’s achievements in conserving energy as the Senate debates a bipartisan energy efficiency bill.

Duane Tilden‘s insight:

>ACEEE graded 34 cities for their efforts in five areas: buildings, transportation, energy and water utility programs, local government operations, and community-wide initiatives.  […]

The cities’ leap forward in energy-efficiency efforts has been a stark contrast to the slow movement on Capitol Hill, where the Energy Savings and Industrial Competitiveness Act of 2013, authored by Sen. Jeanne Shaheen (D-New Hampshire) and Sen. Rob Portman (R-Ohio) has been struggling to move forward.

The bill, […] would require the federal government—the nation’s single largest energy consumer—to update government buildings to improve energy efficiency, institute electricity-saving measures for government computers, and make it easier for agencies to switch to electric and natural-gas-powered vehicles. It also would provide training for workers in how to build more energy-efficient buildings for the private sector, and help finance private-sector renovations for energy efficiency. […]<

See on news.nationalgeographic.com

Developing an Energy Management Program for Your Business

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Today more than ever, businesses are concerned with maximizing operational efficiency, minimizing costs, and seeking out untapped revenue streams. At the same

Duane Tilden‘s insight:

>Large energy users like many commercial, institutional, and industrial organizations have a unique opportunity to act as a “virtual power plant” while reducing their real-time demand for electricity—and opening up a new revenue stream. This strategy, known as demand response, is not only a cost-free way to reduce energy usage, but also it generates payments for participating businesses simply for being on call.

Demand response providers work with commercial, institutional, and industrial businesses to identify ways for facilities to reduce energy consumption without affecting business operations, comfort, or product quality. In turn, those facilities agree to reduce their demand during strategic times so that utilities and grid operators can improve reliability during times of peak demand. Demand response also helps increase economic efficiency in regional energy markets and integrate renewable generation capacity into generation systems.

Demand response can be considered a form of strategic energy efficiency, but what about long-term, persistent energy efficiency, a second key to a comprehensive energy management program? In even the most high-tech, LEED Platinum certified buildings, it can be very difficult to ensure efficient operation over time. […]<

See on www.dailyenergyreport.com

Scotland gives green light to Europe’s largest tidal energy project

See on Scoop.itGreen Energy Technologies & Development

Wave power to provide electricity to 40% homes in Highlands as work on building turbines in Pentland Firth gets approved

Duane Tilden‘s insight:

>”This is a major step forward for Scotland’s marine renewable energyindustry. When fully operational, the 86 megawatt array could generate enough electricity to power the equivalent of 42,000 homes – around 40% of homes in the Highlands. This … is just the first phase for a site that could eventually yield up to 398 megawatts.”<

See on www.theguardian.com

Remote Wireless Power Systems for Buildings

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Mobile Technology News and Information

Duane Tilden‘s insight:

>Ossia’s patented smart antenna technology uses phased arrays to transfer power without the use of inductive coils, ultrasonic waves, magnetic resonance, charging pads or mats. The Cota technology consists of two parts: a charger and a receiver. The Cota-powered charger automatically locates Cota receivers built into devices or batteries, and delivers signals that are sent omnidirectionally. Once they hit the charger, these signals follow the same path back to the receiver, focusing energy at the exact location of the device. Cota continuously streams power to multiple devices, even as they move around a room. The laws of physics make the Cota technology inherently safe, naturally avoiding anything that absorbs energy, such as people, pets and even plants.<

See on www.mobiletechnews.com

U.S. Nuclear Power waning: A history of Failures

See on Scoop.itGreen & Sustainable News

By J. Matthew RoneyNuclear power generation in the United States is falling. After increasing rapidly since the 1970s, electricity generation at U.S. nuclear plants began to grow more slowly in the…

Duane Tilden‘s insight:

>Of the 253 reactors that were ordered by 1978, 121 were canceled either before or during construction, according to the Union of Concerned Scientists’ David Lochbaum. Nearly half of these were dropped by 1978. The reactors that were completed—the last of which came online in 1996—were over budget three-fold on average.

By the late 1990s, 28 reactors had permanently closed before their 40-year operating licenses expired. […]

In 2012, the U.S. Nuclear Regulatory Commission (NRC) approved four new reactors for construction, two each at the Vogtle plant in Georgia and the Summer plant in South Carolina. These reactors are all of the same commercially untested design, purportedly quicker to build than previous plants. Both projects benefit from fairly new state laws that shift the economic risk to ratepayers. These “advanced cost recovery” laws, also passed in Florida and North Carolina, allow utilities to raise their customers’ rates to pay for new nuclear plants during and even before construction—regardless of whether the reactors are ever finished.

Construction at both sites began in March 2013. Even as the first concrete was poured at the $14-billion Vogtle project, it was reportedly 19 months behind schedule and more than $1 billion over budget. The Summer project, a $10 billion endeavor, also quickly ran into problems. […] With these delays, the earliest projected completion date for any of these reactors is some time in late 2017. […]

This year has also already witnessed the permanent shutdown of four reactors totaling 3.6 gigawatts of capacity. The first to fall was Duke’s Crystal River reactor in Florida. Although the plant was licensed to run until 2016, Duke decided to close it rather than pay for needed repairs. Then Dominion Energy’s 39-year-old Kewaunee reactor in Wisconsin closed, citing competition from low gas prices. It had recently been approved to operate through 2033. And in June, Southern California Edison shuttered its two San Onofre reactors after 18 months of being offline due to a leak in a brand new steam generator. These retirements leave the United States with 100 reactors, averaging 32 years in operation. (France is second, with 58 reactors.)

More closures will soon follow, particularly among the roughly half of U.S. reactors in so-called merchant areas […]

Dealing with nuclear waste is another expensive proposition. Over the past 30 years, the U.S. government has spent some $15 billion trying to approve a central repository for nuclear waste, and for most of that time the only site under consideration has been Nevada’s Yucca Mountain. Amid concerns about the site’s safety and its extreme unpopularity in Nevada, the Obama administration has moved to abandon the project entirely and explore other options.

A federal appeals court ruled in August 2013 that the NRC must resume reviewing the site’s suitability. In the meantime, the waste keeps accumulating. The 75,000 tons of waste now stored at 80 temporary sites in 35 states is projected to double by 2055. […]

See on grist.org

Virtual Energy Audits: The Next Big Thing in Buildings?

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Virtual energy audits use software to collect meter data, weather information, etc. and algorithms to develop energy efficiency recommendations.

Duane Tilden‘s insight:

>The goal of any energy audit is to identify savings by analyzing data, determining how and where a building is using energy, and then providing operational and capital energy efficiency measures that improve overall performance.

A traditional ASHRAE Level II Audit includes a manual inspection of data related to a facility’s Building Envelope, Lighting, Heating, Ventilation, and Air Conditioning (HVAC), Domestic Hot Water (DHW), Plug Loads, and Compressed Air and Process Uses (for manufacturing, service, or processing facilities). Analysis is conducted to quantify baseloads and account for seasonal variation. A Level II Audit will also include an evaluation of lighting, air quality, temperature, ventilation, humidity, and other conditions that may affect energy performance and occupant comfort. The process also includes detailed discussions with the building owners, managers, and tenants – there is a lot you can learn just by talking to people about what they think is working and not, what the financial objectives of the organization are, and how that should feed into the recommendations.  […]

Ok, I get it: So what’s a virtual energy audit?

Essentially a virtual energy audit is much like a traditional audit: the goal is to synthesize a whole bunch of data and come up with a list of recommendations that are going to deliver you the biggest bang for your buck. Unlike a detailed ASHRAE Level II audit, it’s better to think of virtual audits as delivering against the 80/20 rule. For a lot less physical effort, it’s going to get you about 80% of the detailed insights that a traditional ASHRAE Level II energy audit would deliver. And for many organizations, that’s OK – because their biggest, most obvious energy hogs are the ones driving the biggest bills at the end of the month.<

See on energysmart.enernoc.com

Industrial networking expands PLC functionality – Energy Efficiency

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Combining real-time Ethernet with visualization, control, and communication capabilities allows PLCs to open the door to a new level of visibility and control for manufacturers.

Duane Tilden‘s insight:

>The days when workers served as the brain and brawn in manufacturing are long gone, while human-machine interaction has become commonplace on the factory floor. A prime example of this is the PLC, which has been the workhorse in automation and manufacturing industries across the board for many years. By interfacing with everything from sensors and machine guards to motion control and advanced identification devices, PLCs ensure operations run smoothly (see Figure 1). Through the flexibility offered with PLCs, manufacturers can manage multiple machines at once—achieving a higher level of integration and process automation machines and improving production quality and cost of operation.

The benefits of the PLC are well known. Their contributions toward efficiency enhancement and the behind-the-scenes support of industrial Ethernet make this heightened control possible. Together, these technologies make communication between humans and machine a seamless, profitable combination. Consisting of various protocols, industrial Ethernet was developed with deterministic capabilities to provide a cost-effective alternative to legacy automation systems.

With advanced capabilities, sophisticated functionality, and simplified installation, the PLC is a cornerstone of modern manufacturing. However, to effectively use these devices, users must understand the crucial role networking plays and the individual requirements that must be considered for an effective solution.  […]<

See on www.plantengineering.com

Clay key to high-temperature supercapacitors

See on Scoop.itGreen Energy Technologies & Development

Clay, an abundant and cheap natural material, is a key ingredient in a supercapacitor that can operate at very high temperatures, according to researchers who have developed such a device.

Duane Tilden‘s insight:

>”Our intention is to completely move away from conventional liquid or gel-type electrolytes, which have been limited to low-temperature operation of electrochemical devices,” said Arava Leela Mohana Reddy, lead author and a former research scientist at Rice.

“We found that a clay-based membrane electrolyte is a game-changing breakthrough that overcomes one of the key limitations of high-temperature operation of electrochemical energy devices,” Reddy said. “By allowing safe operation over a wide range of temperatures without compromising on high energy, power and cycle life, we believe we can dramatically enhance or even eliminate the need for expensive thermal management systems.”

A supercapacitor combines the best qualities of capacitors that charge in seconds and discharge energy in a burst and rechargeable batteries that charge slowly but release energy on demand over time. The ideal supercapacitor would charge quickly, store energy and release it as needed.<

See on www.sciencedaily.com

Regenerative Suspension: How Bumps In The Road Can Generate Electrical Power

See on Scoop.itGreen Energy Technologies & Development

ZF Friedrichshafen AG and Levant Power Corp. have joined together to produce the first fully-active advanced suspension system that recovers energy and directs it to charge the battery while the car is moving.

Duane Tilden‘s insight:

>Gas2 says it’ll be “a while” before the system will go mainstream — likely several years — but it seems a no-brainer for every hybrid and electric vehicle to install this system or one like it to eke out battery charge through energy that is normally wasted. Gas-powered cars also have batteries that get a charge while the engine is running, but they use a belt attached to the engine itself to charge the battery. This causes gas-powered engines to be less efficient, and with most conventional cars using only around 15 percent of the potential energy of gasoline, efficiency comes at a premium.

Most hybrid car drivers will be familiar with the concept of recovering energy from normal car functions because of the increasingly frequent use of brake systems that, when used, transfer heat and friction of normal braking to the battery. As fuel economy standards improve over the next decade, car manufacturers are looking for anything they can do to make cars more efficient.<

See on thinkprogress.org