Energy Storage Solutions for the Smart Grid

In order to ramp up clean energy production, we have to figure out how to store and transmit it effectively. Companies are experimenting with new tech to figure out the best way to progress.

Source: www.techrepublic.com

>”The smart grid energy storage sector is expected to grow to $50 billion by 2020, with an annual compound growth rate of 8%, according to a recent report from Lux Research. In 2013, renewable energy accounted for only 10% of total US energy usage and 13% of electricity generation, according to the US Energy and Information Administration.

But as renewable energy generation rises, transmission and storage advancements will be necessary. Curtailment, the act of spilling renewable energy because there’s more than enough, is one issue to tackle. By changing grid transmission lines in 2010, Texas saw the curtailment in their grid drop from 9% to 4% in 2012, according to a report by the National Renewable Energy Laboratory.

The tipping point with energy storage depends on the grid and the technology used, said Sam Jaffe, an analyst at Navigant Research. Some places in the world that have extremely high penetration rates of renewable energy don’t have major problems with wasted renewables. Denmark sends its extra wind power to Sweden and Norway, while importing hydro power from those two countries when the wind isn’t blowing. Denmark’s wind penetration is now at almost 40%.

“That’s because they are interconnected to other grids that have a lot of flexibility to offtake renewable energy,” he said.”<

 

See on Scoop.itGreen Energy Technologies & Development

Residential Battery Storage Nears Grid Parity in Germany

It’s very close, according to the German government and some industry observers.

Source: www.greentechmedia.com

>”It is now generally recognized that rooftop solar has reached “socket parity” — meaning that it is comparable to or cheaper than grid prices — in many countries over the last few years. The big question for consumers and utilities is when socket parity will arrive for solar and battery storage.

[…] Electricity prices are rising and solar PV prices are falling, which means that if battery storage falls to around €0.20 per kilowatt-hour (U.S. $0.27), parity will be achieved.

Australian investment firm Morgans, in an assessment of Brisbane-based battery storage developer Redflow, suggests that that company’s zinc-bromine flow battery may already be commercially economic in Germany, the country that leads the world in terms of household adoption and government support for renewables.

Morgans notes that in Germany, the cost of household grid power is around €0.30 per kilowatt-hour (U.S. $0.40) and that the government is now subsidizing residential energy storage systems that are connected to solar systems.

“Given Germany’s substantial adoption of solar PV…costs for solar power range from €0.10 to €0.15 per kilowatt-hour (half the grid price), so when energy storage costs reach €0.15 to €0.20, this will mean renewable energy costs will be at parity with grid prices,” Morgans concludes.  […]”<

 

See on Scoop.itGreen Energy Technologies & Development

School to Combine Solar PV Modules with Battery Storage in Belgian Pilot Project

“Such an energy storage and distribution system can offer a great value, certainly for schools”, says Bert Dekeyzer of npo iD, the organization behind the ‘School of the Future’.

Source: www.solarserver.com

>'”During weekends a school consumes almost no electricity. The energy produced by the solar panels is stored in the batteries. On Monday morning there is a peak consumption: then all the computers and machines are turned on, which requires quite a lot of electricity. If the solar panels supply too little at that time, the batteries can provide the remaining energy. Moreover, a study showed that the energy consumption of a school does not stop after four o’clock in the afternoon. Schools are increasingly used in the evening for sports activities and evening classes. Also in this situation, the batteries can play their part.”

PV, storage combination offers a solution for a possible power shortage

In addition to an optimal and economic usage of solar power, the system can provide a solution for a possible power shortage in Belgium. Because of problems with the Belgian nuclear power plants, various municipalities could get disconnected from the electricity grid. In case of a power disruption, a traditional solar installation does not work anymore. The inverter of a traditional system switches off automatically because of a power failure. The owners of solar modules also have no electricity at that time, and in addition they suffer losses of the power output and any feed-in tariffs from their solar panels during the outage.

The storage system provides a solution. Such an installation combines solar modules with battery storage and intelligent software: if the grid fails, the system provides uninterrupted power for the user from the solar modules and/or batteries. […]”<

 

See on Scoop.itGreen Building Design – Architecture & Engineering

5 Steps to Designing a Net Zero Energy Building

traciesimmons's avatardesignrealizedblog

Net zero energy buildings are really just becoming a reality. According to a 2012 Getting to Zero Report by the New Buildings Institute (NBI) and the Zero Energy Commercial Consortium (CBC), 99 commercial buildings have been identified from around the country that are net zero energy performing, zero-energy capable, or are in construction and on their way. And this is just what they know about.

As the industry continues to embark on net zero energy buildings, architecture firms are learning a lot about what it takes to make them reality. San Francisco-based EHDD is one such firm. For nearly a decade they have been designing with net zero in mind.

Sample breakdown of a building&#039;s energy use from EHDD. Sample breakdown of a building’s energy use from EHDD.

According to Brad Jacobson, a Senior Associate at EHDD and recognized leader in sustainable design, “Working on sustainability doesn’t have to be at all about sacrifice. It’s about finding solutions that…

View original post 396 more words

Manufacturer Installs 10 ORC “Machines” to Municipal District Heating System in Europe

RENO, NV–(Marketwired – Aug 7, 2014) – ElectraTherm, a leader in distributed heat to power generation, commissioned 10 Green Machine 4400s in Levice, Slovakia in June 2014.

Source: www.cospp.com

>”[…]The 10-machine installation utilizes the waste heat from two Rolls Royce gas turbines through a combined cycle. Exhaust from the turbines goes through a heat recovery steam generator, and lower temperature exhaust gas that cannot be utilized produces hot water to meet demand for heating on the municipality’s district heating system. The remaining heat runs through ElectraTherm’s Green Machines to generate clean energy and attain attractive feed-in-tariff incentives.

Hot water enters the Green Machine at between 77-116°C (170-240°F), where it heats a working fluid into pressurized vapor, using Organic Rankine Cycle (ORC) and proprietary technologies. As the vapor expands, it drives ElectraTherm’s patented twin screw power block, which spins an electric generator and produces emission free power. Run in parallel, the Green Machines in Levice generate approximately 500 kWe. While combined cycle gas turbines are widely used throughout Europe for power generation and district heating, this is the first application of its kind to utilize ElectraTherm’s ORC technology for the lower temperature waste heat.

The Green Machines help the site reach maximum efficiency levels through heat that would otherwise go to waste. ElectraTherm’s Green Machine generates power from waste heat on applications such as internal combustion engines, biomass, geothermal/co-produced fluids and solar thermal. ElectraTherm’s product line includes units with 35, 65 and 110 kW outputs and offers stand alone or packaged solutions. Read more about Green Machine products at http://electratherm.com/products/.  […]”<

See on Scoop.itGreen Energy Technologies & Development

Liquid Air Proposed as Clean Fuel Replacement for Diesel Vehicles

Liquid air could potentially be a source of clean vehicle power for commercial trucks in the UK by 2020, according to a report by the Liquid Air Energy Network.   Source: www.environmentalleader.com >”The report projects that a liquid-air powered British fleet of 36,000 vehicles by 2025 could save more than 1 billion liters of diesel fuel, 1.4 million metric tons of carbon dioxide equivalent (well-to-wheel), and a net of £113 million ($193 million) in investment costs. […] Although liquid air is not currently in mass production, liquid nitrogen, which has similar properties, could easily be used as a temporary substitute for early liquid air vehicles while waiting for production of liquid air to ramp up to projected demand levels. Although several engine concepts in this area are being developed, report authors decided to focus on the two closest to commercial deployment: the zero-emissions “power and cooling” engine for truck and trailer refrigeration, and the diesel-liquid air “heat hybrid” engine for buses, delivery trucks and other commercial vehicles. The Dearman Engine Company is developing both applications, and its refrigeration engine begins on-vehicle testing this year and is scheduled for commercial production in 2016. According to the report, liquid air is now being recognized as a potentially powerful new energy source, and the concept has received approximately £20 million ($34 million) in government grants, including £9 million ($15.4 million) to develop liquid air energy storage for storing grid electricity, £6 million ($10 million) for a new Centre for Cryogenic Energy Storage at Birmingham University and £5 million ($8.5 million) to develop liquid air vehicle engines.”<   See on Scoop.itGreen Energy Technologies & Development

Province Calls for Renewable Energy Storage Systems Demonstration Projects

Most of the new systems will be able to turn on a dime, storing and releasing energy almost instantaneously to help balance out the supply and demand over the course of a day

Source: www.theglobeandmail.com

>”Ontario has embarked on a quest to find the holy grail of renewable energy – an effective means to store the power generated by intermittent wind and solar installations.

The province’s Independent Electricity System Operator (IESO) recently chose five companies who will build a dozen demonstration projects designed to capture and release energy. That would allow the electricity grid to react to fluctuations in power production, which are becoming more significant with the addition of renewables whose output varies depending on how the wind blows and sun shines.

[…]

The technologies that will be tested include advanced batteries, systems that store power in the form of hydrogen, and even flywheels that hold energy as kinetic energy in a spinning rotor.

Bruce Campbell, president of the IESO, called storage facilities a “game changer” for a grid that was designed to produce electricity at exactly the same time it is consumed. “Energy storage projects will provide more flexibility and offer more options to manage the system efficiently,” he said.

The test projects will be distributed at various locations around the province, and will be connected to different parts of the grid to see how effectively they can help balance supply, demand and other transmission issues.

Among the suppliers are Hydrogenics Corp., which will test a hydrogen storage system, and Hecate Energy and Canadian Solar Solutions Inc., which will use various battery technologies. Convergent Energy and Power LLC will test a flywheel that converts electricity to kinetic energy stored in a rotor. Dimplex North America Ltd. will install thermal systems in apartments in Hamilton, Ont., that store electricity as heat in special bricks, releasing it later when the building needs to be warmed.

Rob Harvey, director of energy storage at Hydrogenics, said his company’s test system will incorporate an advanced electrolysis system that uses electricity to split water into hydrogen and oxygen. That hydrogen can then be used in a fuel cell to generate electricity when needed. Coupling the fuel cell and the electrolyser means power can be effectively stored for any length of time and dispatched as needed.

If the tests are successful, Mr. Harvey said, this could be a significant new line of business for Hydrogenics, which now makes hydrogen-producing systems for industrial customers, as well as fuel cells, which are essentially engines that use hydrogen as fuel.”<

 

See on Scoop.itGreen Energy Technologies & Development

Net-Zero Energy for Buildings – ASHRAE Engineering Design and Construction

Integration: Net-zero energy design

ASHRAE has a goal: net-zero energy for all new buildings by 2030. What do engineers need to know to achieve this goal on their projects?

Source: www.csemag.com

>”As net-zero energy and low-energy design projects become more prevalent, engineers must be prepared to collaborate with all members of a project team including architects, energy specialists, lighting designers, builders, and owners in order to accomplish net-zero energy goals with little to no cost premium. Is this possible today or will it take another 10 or more years to get there?

There are many examples of completed projects demonstrating that not only is this possible, but it has been done in all regions of the country using readily available building products and common construction methods. So what’s the secret? It’s all about the design.

Net-zero energy defined

The term “net-zero energy” is abundantly used, but a single universally accepted definition does not exist. In general terms, a net-zero energy building (NZEB) has greatly reduced energy needs achieved through design and energy efficiency, with the balance of energy supplied by renewable energy. In an effort to clarify the issue, the National Renewable Energy Laboratory (NREL) published a paper in June 2006 titled “Zero Energy Buildings: A Critical Look at the Definition,” in which it defined the following four types of NZEBs:

Net Zero Site Energy: A site NZEB produces at least as much renewable energy as it uses in a year, when accounted for at the site.Net Zero Source Energy: A source NZEB produces (or purchases) at least as much renewable energy as it uses in a year, when accounted for at the source. Source energy refers to the primary energy used to extract, process, generate, and deliver the energy to the site. To calculate a building’s total source energy, imported and exported energy is multiplied by the appropriate site-to-source conversion multipliers based on the utility’s source energy type.Net Zero Energy Costs: In a cost NZEB, the amount of money the utility pays the building owner for the renewable energy the building exports to the grid is at least equal to the amount the owner pays the utility for the energy services and energy used over the year.Net Zero Energy Emissions: A net-zero emissions building produces (or purchases) enough emissions-free renewable energy to offset emissions from all energy used in the building annually. Carbon, nitrogen oxides, and sulfur oxides are common emissions that zero-energy buildings offset. To calculate a building’s total emissions, imported and exported energy is multiplied by the appropriate emission multipliers based on the utility’s emissions and on-site generation emissions (if there are any).

A subsequent paper was published by NREL in June 2010 titled “Net-Zero Energy Buildings: A Classification System Based on Renewable Energy Supply Options,” where four classifications of NZEBs were defined:

NZEB:A: Building generates and uses energy through a combination of energy efficiency and renewable energy (RE) collected within the building footprint.NZEB:B: Building generates and uses energy through a combination of energy efficiency, RE generated within the footprint, and RE generated within the site.NZEB:C: Building generates and uses energy through a combination of energy efficiency, RE generated within the footprint, RE generated within the site, and off-site renewable resources that are brought on site to produce energy.NZEB:D: Building uses the energy strategies described for NZEB:A, NZEB:B, and/or NZEB:C buildings, and also purchases certified off-site RE such as Renewable Energy Certificates (RECs) from certified sources. […]

Integrated building design

Integrated building design is a process that promotes holistic collaboration of a project team during all phases of the project delivery and discourages the traditional sequential philosophy. According to ASHRAE, the purpose of the integrated design process is to use a collaborative team effort to prepare design and construction documents that result in an optimized project system solution that is responsive to the objectives defined for the project. […]

Commissioning is an important part of every project, and for NZEB projects the commissioning authority should be a member of the design team and involved throughout the design process. […]”<

See on Scoop.itGreen Building Design – Architecture & Engineering

Liquid Air Processes for Energy Storage and Power – Grid & Transportation

A 19th-century idea might lead to cleaner cars, larger-scale renewable energy.

Source: www.technologyreview.com

>”Highview Power’s process is 50 to 60 percent efficient—the liquid air can yield just over half as much electricity as it takes to make it. Batteries, by contrast, can be more than 90 percent efficient. But the new process can make up for its inefficiency by using waste heat from other processes (see “Audi to Make Fuel Using Solar Power”). Highview has demonstrated that low-temperature waste heat from power plants or even data centers can be used to help warm up the liquefied air. The system can also last for decades, while batteries typically need to be replaced every few years. This longevity could help reduce overall costs.

Several companies are developing ways to improve the efficiency of compressing air, which could also make the liquefaction process more efficient (see “LightSail Energy Snags $37M in Funding” and “Compressed-Air System Could Aid Wind Power”). Liquefied air is about four times more energy-dense than compressed air, and storing it at a large scale takes up less space.

Liquid air might also prove useful in cars and trucks. An inventor named Peter Dearman has made a compact system that, instead of relying on large heat exchangers, uses antifreeze injected into an engine’s combustion chamber to recycle heat that would otherwise be wasted. He built a ramshackle prototype and showed that it could power a car. Ricardo is working on a version that could eventually be commercialized.

Liquid air stores energy at about the density of nickel–metal hydride batteries and some lithium-ion batteries, the kind used in hybrid and electric cars now. But it has a key advantage—it can be poured into a fuel tank far faster than a battery can be recharged, says Andrew Atkins, a senior technologist at Ricardo. The engine would run on liquid nitrogen—basically liquid air with the oxygen removed—and would emit only nitrogen. The carbon emissions associated with the engine would depend on the power source used to liquefy the nitrogen.”<

Cost Effective ‘net zero’ energy in Jerseyville, Illinois subdivision

Lexington Farms, an affordable housing project of rental homes [built in Illinois].

Source: www.stltoday.com

>”Rooftop solar panels and wind turbines mounted over garages power all 32 homes at Lexington Farms, a new Jerseyville subdivision designed to provide residents no-cost electricity. […]

“Over the course of a year the solar array and wind turbines provide all the energy needed to power heating and air-conditioning systems, along with other household electricity needs,” said Jeff Lewis, president of MidAmerica Solar. “While similar technology has been used in homes, it hasn’t been done on this scale in an entire subdivision.” […]

Each home can produce up to 7.2 kilowatts of energy from roof-mounted solar panels.

Wind turbines mounted on masts over garages provide up to 1 kilowatt of additional energy. Lewis said tests were conducted to make sure the turbines’ vibrations were so slight as to be unnoticed by the homes’ occupants.

Ground-mounted solar panels at the subdivision’s entrance generate power for the community center.

Lexington Farms’ three-bedroom homes rent for $590 per month to families with incomes of $41,000 or less. The houses have central air conditioning, heat, hot water and other appliances that are powered by electricity generated by the solar panels and wind turbines.

The Illinois Housing Development Authority provided more than $2.5 million in assistance for the project, including federal low-income housing tax credits and federal stimulus money. Funding also came from a $260,000 grant from the Illinois Department of Economic Opportunity and financing from Sterling Bank.

Included in the project are 16 streetlights that operate entirely off the electrical grid.

The streetlights, made by MidAmerica Solar, have their own wind turbines and solar panels that provide electricity to energy-efficient LED lights and a backup battery. The lights used to come from China. Now they come from a small factory in Affton.”<