Air Conditioning the World stresses Global Energy Supply

See on Scoop.itGreen Building Design – Architecture & Engineering

The United States currently uses more energy for air- conditioning than all other countries combined—a sobering statistic from Stan Cox of the Land Institute in Salina, Kansas.

Duane Tilden‘s insight:

>According to the U.S. Energy Information Administration, 87 percent of American households are equipped with air-conditioning, and the United States expends about 185 billion kilowatt hours of energy annually on residential cooling.  […]

Rapid increases in the ownership of air conditioners are already occurring in many developing countries. According to research by McNeil and Letschert, the percentage of urban Chinese households with an air conditioner jumped from less than 1 percent in 1990 to 62 percent in 2003. In 2010 alone, 50 million air-conditioning units were sold in China.  […]

[…] eight countries have the potential to exceed the United States’ yardstick of high air-conditioning usage, because of their warm climates and significant populations. Furthermore, the top three could surpass the United States by substantial amounts: India, China, and Indonesia by factors of 14, 5.2, and 3.1, respectively, if they adopt American standards of cooling.

[…] Several institutions have recently made major technical advances in the design of more energy-efficient air conditioners. For example, developments at the National Renewable Energy Laboratory suggest that efficiency improvements of 20 to 70 percent are possible compared to current models of air conditioners. Changes in housing design and urban planning are also needed […]<

See on www.americanscientist.org

Biofuel Production from Palm oil plantation waste

See on Scoop.itGreen Building Design – Architecture & Engineering

NextFuels to produce biofuels from palm plantation residue – Renewable Energy Magazine, at the heart of clean energy journalism

Duane Tilden‘s insight:

>Edible palm oil has surpassed soybean to become the largest source of cooking oil in the world, accounting for over 50 million tons of oil annually.

While plantation owners have managed to increase the productivity of their land by 15X since the late 80s, the growth of the industry has created a corresponding residue problem. Approximately 4.4 to 6 metric tons of agricultural waste is generated for each metric ton of oil. There are over 1,000 crude palm oil (CPO) mills in Southeast Asia and a single (60 tons per hour) mill can generate 135,000 tons of agricultural residue a year.

NextFuels uses a system called bio-liquefaction that efficiently transforms agricultural biomass to green energy. Biomass is placed into the plant mixed with water. The mixture is then heated to 330-degree Celsius while pressure is increased to 220 bar. Increasing the pressure keeps the water from coming to a boil, which conserves energy.

When cooled, the hydrocarbons form a putty-like substance called GreenCrude. Roughly 25 percent of the GreenCrude can be burned as a solid fuel in industrial boilers. The remaining 75 percent can be converted into a liquid-fuel equivalent to petroleum that is compatible with existing pipelines and vehicles.

The equipment required to convert GreenCrude into liquid fuels, in a process called hydrodeoxygenation, is already installed at most refineries and can… <

See on www.renewableenergymagazine.com

Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity

See on Scoop.itGreen Building Design – Architecture & Engineering

Ryu, Young-Hee, Jong-Jin Baik, 2012: Quantitative Analysis of Factors Contributing to Urban Heat Island Intensity. J. Appl. Meteor. Climatol., 51, 842–854.

Duane Tilden‘s insight:

>This study identifies causative factors of the urban heat island (UHI) and quantifies their relative contributions to the daytime and nighttime UHI intensities using a mesoscale atmospheric model that includes a single-layer urban canopy model. A midlatitude city and summertime conditions are considered. Three main causative factors are identified: anthropogenic heat, impervious surfaces, and three-dimensional (3D) urban geometry. Furthermore, the 3D urban geometry factor is subdivided into three subfactors: additional heat stored in vertical walls, radiation trapping, and wind speed reduction. To separate the contributions of the factors and interactions between the factors, a factor separation analysis is performed. In the daytime, the impervious surfaces contribute most to the UHI intensity. The anthropogenic heat contributes positively to the UHI intensity, whereas the 3D urban geometry contributes negatively. In the nighttime, the anthropogenic heat itself contributes most to the UHI intensity, although it interacts strongly with other factors. The factor that contributes the second most is the impervious-surfaces factor. The 3D urban geometry contributes positively to the nighttime UHI intensity. Among the 3D urban geometry subfactors, the additional heat stored in vertical walls contributes most to both the daytime and nighttime UHI intensities. Extensive sensitivity experiments to anthropogenic heat intensity and urban surface parameters show that the relative importance and ranking order of the contributions are similar to those in the control experiment.

Keywords: Urban meteorology

Received: May 7, 2011;<

See on journals.ametsoc.org

NASA – Ecosystem, Vegetation Affect Intensity of Urban Heat Island Effect

See on Scoop.itGreen Building Design – Architecture & Engineering

NASA researchers studying have found that the intensity of the “heat island” created by a city depends on the ecosystem it replaced and on the regional climate.

Duane Tilden‘s insight:

I have measured the heat island effect in the Greater Vancouver area, specifically Metrotown, Burnaby to be in the order of 6 deg C, during a late summer evening.

>”The placement and structure of cities — and what was there before — really does matter,” said Marc Imhoff, biologist and remote sensing specialist at NASA’s Goddard Space Flight Center in Greenbelt, Md. “The amount of the heat differential between the city and the surrounding environment depends on how much of the ground is covered by trees and vegetation. Understanding urban heating will be important for building new cities and retrofitting existing ones.”

Goddard researchers including Imhoff, Lahouari Bounoua, Ping Zhang, and Robert Wolfe presented their findings on Dec. 16 in San Francisco at the Fall Meeting of the American Geophysical Union.

Scientists first discovered the heat island effect in the 1800s when they observed cities growing warmer than surrounding rural areas, particularly in summer. Urban surfaces of asphalt, concrete, and other materials — also referred to as “impervious surfaces” — absorb more solar radiation by day. At night, much of that heat is given up to the urban air, creating a warm bubble over a city that can be as much as 1 to 3°C (2 to 5°F) higher than temperatures in surrounding rural areas.

The impervious surfaces of cities also lead to faster runoff from land, reducing the natural cooling effects of water on the landscape. More importantly, the lack of trees and other vegetation means less evapotranspiration — the process by which trees “exhale” water. Trees also provide shade, a secondary cooling effect in urban landscapes.

Using instruments from NASA’s Terra and Aqua satellites, as well as the joint U.S. Geological Survey-NASA satellite Landsat, researchers created land-use maps distinguishing urban surfaces from vegetation. The team then used computer models to assess the impact of urbanized land on energy, water, and carbon balances at Earth’s surface. <

See on www.nasa.gov

U.S. Geothermal Inc. Announced Final Completion of Neal Hot Springs Power Plant

See on Scoop.itGreen Energy Technologies & Development

BOISE, IDAHO, Aug 01, 2013 (Marketwired via COMTEX) — U.S. Geothermal Inc., (nyse mkt:HTM) CA:GTH -1.96% a leading renewable energy company focused on the development, production, and sale of electricity from geothermal energy, announced () that Final Completion of the 22 megawatt (net) Neal Hot Springs Project has been achieved.

Duane Tilden‘s insight:

>The Neal Hot Springs Project was the first geothermal project to obtain a loan guarantee under the DOE’s Title XVII loan guarantee program, which was created by the Energy Policy Act of 2005 to support the deployment of innovative clean energy technologies. The DOE loan guarantee, guarantees a loan from the U.S. Treasury’s Federal Financing Bank. The project was authorized for a loan guarantee of up to $96.8 million.

The Neal Hot Springs project deployed a first of its kind binary cycle process, utilizing a supercritical cycle that uses R134a refrigerant as the working fluid, as well as pre-fabricated modular construction of major plant components. […]

The project is selling electricity to Idaho’s largest utility, Idaho Power Company, under a previously signed 25-year power purchase agreement for up to 25 megawatts of power per year. Beginning in 2012, the base energy price is $96 per MW Hour and escalates annually. The calculated 25-year levelized price is $117.65 per MW hour.<

See on www.marketwatch.com

Waste to Energy – Incinerator Operations threaten Community recycling programs

See on Scoop.itGreen Building Design – Architecture & Engineering

Rise in number of plants burning waste may be disincentive to greener methods of disposal

Duane Tilden‘s insight:

>Experts said the use of incinerators had consequences for recycling as local authorities were forced to divert waste to feed the plants. “The choice to invest in thermal treatment can hold back recycling efforts,” Adam Baddeley, principal consultant at Eunomia, said. “At one level, the money invested in such plant simply isn’t available to put into building recycling plants or collection infrastructure. And once you’ve built an incinerator or gasifier, there’s a strong incentive to keep it fed with waste, even if that means keeping on collecting as ‘black bag’ rubbish, material that would be economically practicable to collect separately for recycling.”

Charmian Larke, technical adviser for Cornwall Waste Forum, which unsuccessfully opposed a large incinerator in the south-west, questioned the planning process that resulted in incinerators being approved. “Some of them [planning officers] have spent their entire careers trying to get this incinerator so they are wedded to the idea,” Larke said. “But if the council members understood how bad these contracts were, the officers would lose their jobs.”

Larke claimed that many of the incinerators were built in poorer areas. “There’s a feeling that people who are downtrodden have a harder time getting their act together to object, and hence it’s easier to place nasty things next to them.”<

See on www.theguardian.com

Construction Materials Scarcities in India spurs alleged Mafia-Political corruption

See on Scoop.itGreen Building Design – Architecture & Engineering

In several areas, Indian rules and regulations make honest business impossible. The only choice is illegal business or no business.

Duane Tilden‘s insight:

>Sand is essential for construction. Sand, gravel and cement are mixed to produce concrete. But an acute sand shortage has been created by licensing and environmental bottlenecks. So, mafia groups are mining river beds illegally across India. It’s easy: one mechanical excavator can extract several truckloads of sand every night.

Sand helps retain monsoon water in river beds, releasing the water gradually in the dry season. Excessive mining endangers this. Central and state governments have detailed environmental rules for extraction, made even tougher by court interventions. Ideally, we should have environmentally safe mining that meets rising construction demand.

Instead we have grossly insufficient legal mining, huge illegal mining, sand scarcity for construction, and big illegal profits split between the mafia and politicians.

A former cabinet minister recently declared that political parties are now funded mainly by the mafia, not by big business. This again is part of the untold Durga Sakthi story.

Politicians used to demand bribes for mining licences. Now, they deliberately hold back leases to make sand scarcer, and more profitable. […]<

See on www.cato.org

Drilling Companies Cheating Landowners and Government Out of Royalty Payments

See on Scoop.itGreen & Sustainable News

Don Feusner ran dairy cattle on his 370-acre slice of northern Pennsylvania until he could no longer turn a profit by farming.

Duane Tilden‘s insight:

>Like every landowner who signs a lease agreement to allow a drilling company to take resources off his land, Feusner is owed a cut of what is produced, called a royalty.

In 1982, in a landmark effort to keep people from being fleeced by the oil industry, the federal government passed a law establishing that royalty payments to landowners would be no less than 12.5 percent of the oil and gas sales from their leases.

From Pennsylvania to North Dakota, a powerful argument for allowing extensive new drilling has been that royalty payments would enrich local landowners, lifting the economies of heartland and rural America. The boom was also supposed to fill the government’s coffers, since roughly 30 percent of the nation’s drilling takes place on federal land.

Over the last decade, an untold number of leases were signed, and hundreds of thousands of wells have been sunk into new energy deposits across the country.

But manipulation of costs and other data by oil companies is keeping billions of dollars in royalties out of the hands of private and government landholders, an investigation by ProPublica has found.

An analysis of lease agreements, government documents and thousands of pages of court records shows that such underpayments are widespread. Thousands of landowners like Feusner are receiving far less than they expected based on the sales value of gas or oil produced on their property. In some cases, they are being paid virtually nothing at all.

In many cases, lawyers and auditors who specialize in production accounting tell ProPublica energy companies are using complex accounting and business arrangements to skim profits off the sale of resources and increase the expenses charged to landowners.<

See on insideclimatenews.org

MHI Completes Acquisition of Pratt & Whitney Power Systems

See on Scoop.itGreen Energy Technologies & Development

Tokyo, May 20, 2013 – Mitsubishi Heavy Industries, Ltd. (MHI) has completed its acquisition of Pratt & Whitney Power Systems, the small and medium-size gas turbine business unit of Pratt & Whitney (P&W), an aeroengine manufacturer.

Duane Tilden‘s insight:

>MHI has traditionally focused its gas turbine business on large-capacity, high-efficiency systems. With the addition of PWPS’s small and medium-size aero-derivative engines, MHI has expanded its power generation product portfolio and is able to offer customers a full product lineup.

PWPS’s aero-derivative gas turbines are highly acclaimed, especially for their emergency power generation applications, compact design, and rapid start-up time. More than 1,700 aero-derivative turbines have been delivered worldwide. Significant growth is anticipated in applications that require a flexible power source complementary to a renewable-energy power source. Robust market demand is also expected as small power sources for applications in emerging markets. PWPS’s main product has been the 30MW (megawatt) class machine. The company is developing an innovative 60MW class model, which is expected to significantly boost PWPS’s market share.

Turboden’s ORC turbines have the capability to generate power or supply hot water using a relatively low-temperature heat source such as biomass, factory waste heat or geothermal energy. The company has sold more than 300 units in 20 countries, primarily in Europe. In Japan, increasing opportunities are emerging to use ORC technology in biomass and geothermal applications, and MHI plans to significantly increase sales in those expanding markets.

MHI and P&W have been in a collaborative relationship in aeroengine production for many years. After the acquisition of PWPS, MHI will continue to collaborate with P&W in the supply of engine parts for gas turbines and development of new machines.<

See on www.mhi.co.jp

Energy Efficiency Methods in the Cement industry – Part 1: Organic Rankine Cycle

See on Scoop.itGreen Energy Technologies & Development

Thomas B. Gibbons takes a look at the Conventional Rankine Cycle’s application in the cement sector

Duane Tilden‘s insight:

>The first major waste heat recovery (WHR) system in a cement plant was the 15 MW unit installed by Kawasaki Heavy Industries for Taiheiyo Cement in 1982. This was a conventional Rankine Cycle using heat from both the kiln and the clinker cooler. As the benefits became generally recognised within the industry, WHR units, the vast majority of which involved the conventional Rankine Cycle, were installed to provide up to about 30% of the power requirements of the plant. The main sources of waste heat were the exhaust from both the preheater and the clinker cooler and, in some of the developing countries where power outages are not unusual, the WHR system may be the only source of reliable power available to the plant operator.

Improvement in the overall efficiency of cement manufacture has resulted in lower exhaust gas temperatures and this development has provided opportunities for alternative technologies, notably the Organic Rankine Cycle (ORC) and the Kalina Cycle, which are more effective in recovering waste heat from lower temperature gases.<

See on www.worldcement.com