Buildings are biggest source of GHG’s in Vancouver & City recommends Energy Retrofits

Buildings spew more than half of all Vancouver’s total greenhouse gas (GHG) emissions every year and detached houses are the biggest culprit […] That fact is key to a staff recommendation that council adopt an energy retrofit strategy for existing buildings to drastically cut GHG emissions.

Source: www.vancouversun.com

>”About 40,000 of Vancouver’s 77,000 detached homes were built before 1960. The report said most older homes could improve their energy efficiency with weather sealing, wall and attic insulation, furnace/boiler/hot water heater replacements and replacing old windows with new energy-efficient glazing.

About 55 per cent of GHG emissions in Vancouver come from buildings and of those detached homes create 31 per cent of building emissions, the report said.

That compares with industry’s 20-per-cent share and 18 per cent from multi-unit residential buildings.

The city’s Greenest City Action Plan has targeted a 20-per-cent reduction in GHG emissions from Vancouver buildings by 2020, which would eliminate 160,000 tonnes of emissions annually — the equivalent of taking 40,000 cars off the road.

The report recommends the city partner with BC Hydro and/or FortisBC to study the effectiveness of using thermal imaging to identify poorly insulated homes.

[…]

… common energy-efficient building practices today include using vinyl or wood window frames instead of aluminum, along with the use of heat pumps, solar panels and drainwater recovery systems.

But Kerchum noted it can cost nothing to improve a home’s energy efficiency.

[…]

A recent Vancouver city initiative to improve energy efficiency in Vancouver homes — the Home Energy Loan Program — had a very low participation rate among homeowners.

The program called for homeowners to have an energy audit by a federally licensed auditor, who would recommend the best ways to reduce a home’s carbon footprint.”<

Grid Scale Energy Storage Solutions For Future Virtualization

Examines grid scale energy storage solutions ranging from pumped hydro, compressed air, thermal storage, advanced batteries, fuel cells and purely electric storage systems.

Source: greeneconomypost.com

Renewable energy sources often have a common problem of matching supply with demand, hence the need for energy storage to bridge the gap.  One major component of future VPP (Virtual Power Plants) is energy storage, in the form of battery storage, fuel cells, pumped hydro, flywheels, compressed air or other forms of existing and new technologies.

One promising form of energy storage combines gravity with water where energy is stored in raising heavy weights.  Electrical energy is converted to potential energy during periods of over-supply and then converted back to electricity when demand is greater than supply.

>”A Cutting Edge Variation of Pumped Hydro

Gravity Power, LLC, a privately-held company, based in Southern California (in Goleta, CA just north of Santa Barbara) is developing a novel grid-scale energy storage system for global commercialization called the Gravity Power Module (GPM). Like pumped hydro the working energy carrier is water that is pumped between a high pressure and a low pressure reservoir running a reversible generator/pump assembly to either produce power by drawing down the high pressure reservoir or store it up by pumping water from the low pressure store back into the high pressure store. In this sense it operates on the very same principles – and thus can also benefit from existing capital equipment, such as the reversible hydro generator/pump assemblies for example – as traditional pumped hydro.

Gravity Powers technology circumvents traditional pumped hydro difficulties related to siting, negative environmental impact, huge land demands, permitting, long-lead times and the very large investment required, by burying it all underground…. literally.

The GPM system uses a very large and very dense high mass piston that is suspended in a deep, water-filled shaft. The piston is equipped with sliding seals to prevent leakage around the piston/shaft interface and its immense mass pressurizes the supporting water column beneath it. A high pressure pipe from the bottom of this shaft enables water to be run or pumped through a generator/pump assembly of the same types now used in pumped hydro systems. The low pressure low energy potential water is returned above the piston adding somewhat to its weight and further pressuring the remaining high energy potential water column.

The massive piston moves up and down the shaft, storing and releasing power in a closed sealed cycle. It is compact with a small land footprint and the units can be clustered together into larger groups. It also is environmentally benign, no toxic chemicals or explosive dangers.

I like the scalable nature of this store that makes it suited to incremental growth of capacity. I also like how this energy storage system could be placed very near the big urban areas of greatest need for this kind of electric capacity. The fact that this energy storage system can take advantage of a lot of already existing infrastructure and technical knowhow from the existing pumped hydro sector is a definite advantage.

I would like to see more details on the costs of the boring of the immense vertical shafts; the long term performance metrics of the shaft seals (that would be an expensive repair job I would think. All in all I think this or something like it is a strong contender in the energy storage sector.”<

Read more: http://greeneconomypost.com/fifteen-grid-scale-energy-storage-solutions-watch-15924.htm#ixzz35bedEesM

VPP – New Models for the Distributed Grid Network

National Instruments, LocalGrid, and Toronto Hydro pilot the software-defined, peer-to-peer distributed grid architecture.

Source: www.greentechmedia.com

>” […] Because each CompactRIO endpoint is inherently flexible, LocalGrid can provide “protocol conversion which we can update dynamically over the air, analytics that we can update to the system, and run multiple applications on the same device,” he said. This is similar in intent to the kind of field-distributed computing capability that Silver Spring Network’s new SilverLink Sensor Network platform and Cisco’s new IOx platform are opening up to partners, but it’s pretty far ahead of the capabilities of the vast majority of today’s grid edge devices.

In fact, in terms of technology that allows interoperability without a lot of expensive and complex pre-integration work, “The existing players do not have solutions that will do this job,” Leigh said. “They’re not fast enough, they’re not open enough, or they don’t have solutions that are cost-effective enough in the distribution space.”

So far, LocalGrid has connected four sites with a combination of solar PV and wind turbine inverters and metering hardware, and is now in the midst of its second phase of developing custom algorithms for tasks such as detecting faults and forecasting solar and wind generation and loads on distribution circuits, Leigh said. These aren’t necessarily huge challenges for Toronto Hydro’s existing IT infrastructure at pilot scale, “But if we were to multiply that across the network, it’s just not feasible to get all that data to be analyzed into a back-end system,” he said.

As for how to expand LocalGrid’s software capabilities to a broader set of grid endpoints, Leigh cited Cisco’s IOx-enabled grid routers as potential future partners. Other big grid vendors like General Electric, ABB and Siemens “are at different stages starting to open up their systems,” he said. “The question that still has to be worked out is how much third-party development can take place on their new systems.”

That’s the same question that Duke has been asking the grid vendor community, via its plans to open its source code and hardware adapter reference designs to the public. The past half-decade has seen open-source grid systems emerge from simulation software and data management tools to a few real-world grid applications, albeit still in the experimental stage. Perhaps the next half-decade will see the open grid edge platform attain real-world status.”<

Virtual Power Plants (VPP): A New Tech Based Utility Model for Renewable Power Integration

Today’s global energy market is in the midst of a paradigm shift, from a model dominated by large centralized power plants owned by big utilities to a mixed bag of so-called distributed energy generation facilities — smaller residential, commercial and industrial power generation systems &mdas

Source: www.renewableenergyworld.com

>”Virtual Power Plants

One distributed generation technology with significant growth potential is the virtual power plant (VPP). In the VPP model an energy aggregator gathers a portfolio of smaller generators and operates them as a unified and flexible resource on the energy market or sells their power as system reserve.

VPPs are designed to maximize asset owners’ profits while also balancing the grid. They can match load fluctuations through forecasting, advance metering and computerized control, and can perform real-time optimization of energy resources.

“Virtual power plants essentially represent an ‘Internet of Energy,’ tapping existing grid networks to tailor electricity supply and demand services for a customer,” said Navigant senior analyst Peter Asmus in a market report. The VPP market will grow from less than US $1 billion per year in 2013 to $3.6 billion per year by 2020, according to Navigant’s research — and one reason is that with more variable renewables on the grid flexibility and demand response are becoming more crucial.

Asmus called VPPs “an ideal optimization platform for the coming transformation of the power grid,” adding that both supply and demand flexibility will be increasingly necessary to accommodate fast ramping periods and address corresponding supply forecast errors.

German utility RWE began a VPP in 2012 that now has around 80 MW of capacity. According to Jon-Erik Mantz, commercial director of RWE Energy Services in Germany, in the near future flexibility will become a commodity. Virtual power plants generate additional value from the flexibility they can offer the grid, he said-so, for RWE, “this is why we concentrate on building VPPs.” As large utilities’ market share falls in response to growing self-consumption, he said, utilities can still “be part of a VPP and profit.”

Dr. Thomas Werner, senior key expert in product lifecycle management at Siemens, said that in order to integrate diverse smaller energy sources, “You need an energy management system with good data models which represents energy resources on the one hand and, on the other, the energy market environment.” Werner believes VPPs fulfill these conditions and are the best way to integrate a growing number of power sources into the grid and the market.

“VPPs can be handled like other conventional generation,” he said. “They can target different energy markets and regulatory environments. They can play as important a role as conventional concentrated generation.”

“No Real Competition”

“From my point of view, there is no real competition for the VPP concept,” Werner said, pointing to VPPs’ use of cheap and ubiquitous information and communication technologies, while other technology trends like building energy storage systems incur comparatively heavy costs. VPPs can also avoid expensive installation costs in, for example, a home system, he notes. Self-consumption for home or industrial use is hampered by having to produce “the right amount of power at the right time.”

VPPs can deliver needed energy at peak usage times, and can store any surplus power, giving the energy aggregator more options than would exist in a single power plant. Other advantages include improved power network efficiency and security, cost and risk savings in transmission systems, increased value from existing infrastructure assets and reduced emissions from peaking power plants. And, importantly, VPPs can also enable more efficient integration of renewable energy sources into the grid by balancing their variability.

For example, explains Werner, if one wind power source generates a bit more energy than predicted and another generates a bit less, they will compensate for each other, resulting in a more accurate forecast and making it easier to sell the capacity in the market or to use it in power systems operation.

A VPP can also combine variable renewable power sources with stable, controllable sources such as biomass plants, using the flexibility of the biomass source to smooth out any discrepancy between planned and actual production.”<

Affordable Housing Designed for Net Zero

See on Scoop.itGreen Building Design – Architecture & Engineering

Lexington Farms, a single family affordable housing development in Illinois, looks to be LEED Platinum and net zero via clean energy on each house.

Duane Tilden‘s insight:
“The model under which these modular homes are made available to residents is rather unique. They were built for those making less than $41,000 a year, and were reportedly provided to these people in a rent to own situation at a set monthly lease cost of $590. Each 1,425 square foot, three bedroom dwelling is green down to its core via an array of eco technologies. Owners apparently had to be provided with a special manual to educate them about the various green technologies they are living with. So what exactly is under the hood of each green home in Lexington Farms? According toUrban Green Energy, the impressive list includes one of the firm’s 1,000 watt eddyGT vertical axis wind turbines; 7,200 watt photovoltaic solar roof panels; Energy Starappliances; U35-rated, argon gas filled windows; R-21 wall and R-49 attic insulation; low-flow water fixtures and WaterSense toilets; sustainable landscaping with efficient irrigation systems; recycled construction materials; low VOC paints and energy efficient, fluorescent light fixtures. At the time of construction is was said the IHDA invested more than $2.5 million into the project, providing federal American Recovery and Reinvestment Act (ARRA) funds and federal Low-Income Housing Tax Credits to finance it. The federal tax credits, noted the IHDA, “were a result of a special allocation for counties hit by severe flooding [and] generated an additional $6.7 million in private equity for the development.” Overall, these green homes aimed for net zero energy usage via the renewable energy features. An additional $260,000 grant from the Illinois Department of Commerce and Economic Opportunity further supported the development.”

See on earthtechling.com

Asbestos – Best Practice Approach To Roof Refurbishment

Excellent article on legacy asbestos insulated roofing systems and remediation methods.

Specifier Review's avatarArchitecture, Design & Innovation

For any demolition, refurbishment or repair project, the presence of asbestos in the building can have far reaching cost and health & safety implications. And it’s not an uncommon problem. Asbestos was widely used as a roofing material right the way through to the 1970s thanks to its durability and fire resistance benefits at low cost.

The use of asbestos as a building material is a legacy of the built environment that today’s roofing contractors are often tasked with tackling, as those roofs originally specified in the 1950s, 60s and 70s fail and need to be replaced.  Sometimes, there may be no other option than to remove the asbestos roof and incur the project delays and added costs that specialist remediation involves. However, while the Control of Asbestos regulations 2012 ensures that building owners are accountable for preventing any risk of exposure to asbestos fibres from their building, contractors do…

View original post 747 more words

A different kind of pipe

NSF awards grant to Mechanical Engineer prof for underwater kite marine power research

A three-year, US$300,000 grant from the National Science Foundation will allow Worcester Polytechnic Institute associate professor of mechanical engineering David Olinger to conduct research on developing a new form of ocean energy.

Duane Tilden‘s insight:

“The research builds on Olinger’s prior research, funded by the NSF and U.S. Environmental Protection Agency, in which he developed a low-cost kite system that used wind to generate power. Olinger and a team of graduate students developed computational models that predict trajectories and power output for kites of different sizes and tethers of different lengths, which can be used to design kites capable of flying in stable, high-speed figure-eight patterns under changing weather conditions.

The same algorithms can be applied to the design of underwater kites, Olinger said, but “instead of moving air, you have moving water and the kites have rigid wings.”

Olinger will now evaluate possible designs for undersea kites and explore methods for tethering them to floating platforms similar to those used for oil and gas rigs.

WPI said the team will also examine the advantages and disadvantages of mounting turbine generators directly to the kites or placing the generators on the platforms. […]

Olinger’s kite system is similar to one already being developed by Swedish company Minesto, though a WPI representative said the two projects are not related.”<

See on www.hydroworld.com

Sweden’s Minesto Ocean Energy Kite System Proven Operational

2013-11-12

Minesto’s step-change marine power plant now producing electricity in Northern Ireland proving viability for huge ocean current power market

The Deep Green ‘underwater kite’ marine power plant is now producing electricity in the waters off Northern Ireland. This is the first time ever a marine power plant designed for low velocity currents produces electricity at sea, anywhere in the world, and the ocean trials verify the ability to unlock ocean currents as a renewable energy source. “This is a break-through for the entire renewable energy industry,” said Minesto’s CEO Anders Jansson.

deep-green-underwater-kite

Image source: minesto.com

Company Press Release:  http://bit.ly/18mXIfT

Infographic – Energy Efficiency – Variable Speed Motors & Drives

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Infographic – Energy efficiency. A solution.

Duane Tilden‘s insight:

Industry has been reported to consume between 40 and 60% (UN Report) of the world’s electrical supply.  Motors are the largest consumer of the industrial electrical supply and the greatest opportunity for industry wide savings.

Many motors are over-sized and run inefficiently.  Variable speed drives can significantly reduce industrial operating costs, with attractive payback period and reductions in energy consumption by up to 50% or more.

See on www.abb.com