Thermoelectric Materials: Converting Heat to Electricity

When we think of using electricity one of the prevalent uses is to provide a heat source.  We see this in our everyday lives as ranges and ovens, microwaves, kettles, hot water tanks, baseboard heaters, as well as other applications.  So how about reversing the process and capturing heat and directly converting to electricity, is this possible?  As it happens there is a classification of materials which have a property called a thermoelectric effect.

Boosting energy efficiency is an important element of the transition to a sustainable energy system. There are big savings to be made. For example, less than half the energy content of diesel is actually used to power a diesel truck. The rest is lost, mostly in the form of heat. Many industrial processes also deal with the problem of excessive .

That’s why many research teams are working to develop that can convert waste heat into energy. But it’s no easy task. To efficiently convert heat to electricity, the materials need to be good at conducting electricity, but at the same time poor at conducting heat. For many materials, that’s a contradiction in terms.

“One particular challenge is creating thermoelectric materials that are so stable that they work well at high temperatures,” says Anders Palmqvist, professor of materials chemistry, who is conducting research on thermoelectric materials. (1)


Image 1:  The enlarged illustration (in the circle) shows a 2D electron gas on the surface of a zinc oxide semiconductor. When exposed to a temperature difference, the 2D region exhibits a significantly higher thermoelectric performance compared to that of bulk zinc oxide. The bottom figure shows that the electronic density of states distribution is quantized for 2D and continuous for 3D materials. Credit: Shimizu et al. ©2016 PNAS

The thermoelectric effect is not as efficient as converting electricity to heat, which is generally 100% efficient.  However, with waste energy streams even a small conversion rate may return a significant flow of usable electricity which would normally go up a stack or out a tailpipe.

The large amount of waste heat produced by power plants and automobile engines can be converted into electricity due to the thermoelectric effect, a physics effect that converts temperature differences into electrical energy. Now in a new study, researchers have confirmed theoretical predictions that two-dimensional (2D) materials—those that are as thin as a single nanometer—exhibit a significantly higher thermoelectric effect than three-dimensional (3D) materials, which are typically used for these applications.

The study, which is published in a recent issue of the Proceedings of the National Academy of Sciences by Sunao Shimizu et al., could provide a way to improve the recycling of into useful energy.

Previous research has predicted that 2D materials should have better thermoelectric properties than 3D materials because the electrons in 2D materials are more tightly confined in a much smaller space. This confinement effect changes the way that the electrons can arrange themselves. In 3D materials, this arrangement (called the density of states distribution) is continuous, but in 2D materials, this distribution becomes quantized—only certain values are allowed. At certain densities, the quantization means that less energy is required to move electrons around, which in turn increases the efficiency with which the material can convert heat into . (2)


Related Articles:



Scientists Discover New Form of Crystalline Order with High Potential for Thermoelectrics


InterlacedCrystalsSince the 1850s scientists have known that crystalline materials are organized into 14 different basic lattice structures. However, a team of researchers from Vanderbilt University and Oak Ridge National Laboratory (ORNL) now reports that it has discovered an entirely new form of crystalline order that simultaneously exhibits both crystal and polycrystalline properties, which they describe as “interlaced crystals.”


>” […] The interlaced crystal arrangement has properties that make it ideal for thermoelectric applications that turn heat into electricity, they report. The discovery of materials with improved thermoelectric efficiency could increase the efficiency of electrical power generation, improve automobile mileage and reduce the cost of air conditioning.   “We discovered this new form while studying nano particles,” said Sokrates Pantelides, University Distinguished Professor of Physics and Engineering at Vanderbilt, who coordinated the study. “It most likely exists in thin films or bulk samples, but it has apparently gone unnoticed.”  […]

According to the researchers, the interlaced crystal structure may be just what is needed to optimize thermoelectric applications for power generation or cooling. Thermoelectric devices need a material that is an excellent electrical conductor and a poor conductor of heat. The problem is that materials like metals that are good electrical conductors also tend to be good heat conductors and vice versa. Defects and grain boundaries that retard heat flow also reduce electrical conductivity.   In addition to CuInS2, there is a large class of materials that should have similar interlaced structures. When made into thin films, they should be excellent thermoelectric materials, the researchers predict.   “We haven’t tested this yet, but we are confident that these materials have high electrical conductivity and low thermal conductivity…just what you need for thermoelectrics. The field is now wide open for scientists who can fabricate thin films and make thermoelectric measurements,” said Pantelides.”<

See on Scoop.itGreen Energy Technologies & Development

Evidence Suggests Nuclear Powered Core Provides 50% of Earth’s Heat Energy

See on Scoop.itGreen & Sustainable News

Geoneutrino detector probes deep into the Earth

Duane Tilden‘s insight:

“About 50% of the heat given off by the Earth is generated by the radioactive decay of elements such as uranium and thorium, and their decay products. That is the conclusion of an international team of physicists that has used the KamLAND detector in Japan to measure the flux of antineutrinos emanating from deep within the Earth. The result, which agrees with previous calculations of the radioactive heating, should help physicists to improve models of how heat is generated in the Earth.

Geophysicists believe that heat flows from Earth’s interior into space at a rate of about 44 × 1012 W (TW). What is not clear, however, is how much of this heat is primordial – left over from the formation of the Earth – and how much is generated by radioactive decay.  […]

One possibility that has been mooted in the past is that a natural nuclear reactor exists deep within the Earth and produces heat via a fission chain reaction. Data from KamLAND and Borexino do not rule out the possibility of such an underground reactor but place upper limits on how much heat could be produced by the reactor deep, if it exists. KamLAND sets this limit at about 5 TW, while Borexino puts it at about 3 TW.”

See on