Comfort is key in a passive house

0620 home green  Rendering of the home Chris Weissflog, who operates the renewable energy firm Ecogen Energy, is building for his family. Among other green features, its solar panels will meet most of the 3,000-square-foot home’s heating and cooling needs as well as powering a greenhouse with an extended growing season. With story by Patrick Langston.

0620 home green Rendering of the home Chris Weissflog, who operates the renewable energy firm Ecogen Energy, is building for his family. Among other green features, its solar panels will meet most of the 3,000-square-foot home’s heating and cooling needs as well as powering a greenhouse with an extended growing season. With story by Patrick Langston.

>” […] The falling price of technology may still help us out of the quandary. The CHBA is currently developing a net zero and net zero-ready labelling program for home builders and renovators. A net zero home typically uses photovoltaic panels to produce as much energy as it consumes, generally selling excess electricity to the grid. A net zero-ready home is set up for, but does not include, the photovoltaic system.

The CHBA’s Foster says that a net zero home including photovoltaic panels now costs $50,000 to $70,000 more than a conventional home. That’s 50 per cent of the cost of just five years ago, and the price of PV panels continues to drop.

With rising energy prices, the CHBA says the extra monthly mortgage costs associated with a net zero home are now comparable to the savings in energy costs, making it net zero in more ways than one. […]”<

E.P.A. Proposal to Regulate GHG Emissions and Fuel Economy for HD Trucks

The Environmental Protection Agency is expected to propose rules requiring heavy trucks to increase their fuel economy by up to 40 percent by 2027.

Sourced through Scoop.it from: www.nytimes.com

>” […] This week, the E.P.A. is expected to propose regulations to cut greenhouse gas emissions from heavy-duty trucks, requiring that their fuel economy increase up to 40 percent by 2027, compared with levels in 2010, according to people briefed on the proposal. A tractor-trailer now averages five to six miles a gallon of diesel. The new regulations would seek to raise that average to as much as nine miles a gallon. A truck’s emissions can vary greatly, depending on how much it is carrying.

The hotly debated rules, which cover almost any truck larger than a standard pickup, are the latest in a stack of sweeping climate change policy measures on which President Obama hopes to build his environmental legacy. Already, his administration has proposed rules to cut emissions from power plants and has imposed significantly higher fuel efficiency standards on passenger vehicles.

The truck proposals could cut millions of tons of carbon dioxide pollution while saving millions of barrels of oil. Trucks now account for a quarter of all greenhouse gas emissions from vehicles in the United States, even though they make up only 4 percent of traffic, the E.P.A. says.

But the rules will also impose significant burdens on America’s trucking industry — the beating heart of the nation’s economy, hauling food, raw goods and other freight across the country.

It is expected that the new rules will add $12,000 to $14,000 to the manufacturing cost of a new tractor-trailer, although E.P.A. studies estimate that cost will be recouped after 18 months by fuel savings.

Environmental advocates say that without regulation, the contribution of American trucks to global warming will soar.

“Trucking is set to be a bad actor if we don’t do something now,” Jason Mathers, head of the Green Freight program at the Environmental Defense Fund.

But some in the trucking industry are wary.

“I’ll put it this way: We told them what we can do, but they haven’t told us what they plan to do,” said Tony Greszler, vice president for government relations for Volvo Group North America, one of the largest manufacturers of big trucks. “We have concerns with how this will play out.”

The E.P.A., along with the National Highway Traffic Safety Administration, began its initial phase of big truck fuel economy regulation in 2011, and those efforts have been widely seen within the industry as successful. But meeting the initial standards, like using more efficient tires, was not especially difficult by comparison. […]”

See on Scoop.itGreen & Sustainable News

Company Developing Thermo-Electric Materials for Waste-Heat Energy Recovery

NASA’s Jet Propulsion Laboratory, Pasadena, California, has licensed patents on high-temperature thermoelectric materials to Evident Technologies, Troy, New York, which provides these kinds of materials and related power systems.

Source: phys.org

>” […] Thermoelectric materials convert heat into electricity. For example, by using this technology, waste-heat from a car could potentially be fed back into the vehicle and used to generate electricity. This would increase efficiency and deliver low-cost solutions for harvesting waste heat.

“The licensed technology could be applied to convert heat into electricity in a number of waste heat recovery applications, including automobile exhaust and high-temperature industrial processes such as ceramic and glass processing plants,” said Thierry Caillat, task leader for the thermoelectrics team at JPL.

JPL has a long history of high-temperature thermoelectric development driven by the need for space mission power in the absence of sunlight. Many space probes that leave Earth’s orbit use thermoelectrics as their electrical power source.  […]”<

See on Scoop.itGreen Energy Technologies & Development

The Smart City

“With this unprecedented access to information, Smart Cities will deliver new levels of efficiency, effectiveness, safety, reliability, and higher levels of service. This access enables a city to anticipate and prevent problems in areas like reducing accidents by rerouting traffic, and reducing crime by identifying hot spots. New insight also enables the provision of services like finding a parking spot, monitoring air pollution, intelligent lighting, and others. A sense and respond model (a key future enabler) allows for the delivery of many of these services without human intervention.

A next generation of efficiency is also enabled, as asset tracking will streamline operations and insight will deliver unprecedented levels of efficiency. For example, a recent survey of water utilities found a saving potential between $7.1 and $12.5 billion each year through smart water solutions. The chief globalization officer of Cisco has said that smart cities drive energy consumption savings of 30% and water consumption savings of 50%. These environmental benefits include reducing greenhouse gas emissions and improving waste management. Boston University Installed self-powered trash receptacles which wirelessly alerted collection vehicles when they were full, resulting in on-campus trash collection being reduced from 14 times per week to an average of 1.6 times per week.

The Smart City

The Smart City is Defined as a developed urban area that creates sustainable economic development and a high quality of life by excelling in multiple key areas; economy, mobility, environment, people, living, and government. Excelling in these key areas requires strong human capital, social capital, and information and communications technology. We are in the early days of an evolution towards Smart Cities, and IDC Government Insights finds that most cities are deploying these projects department by department. In a recent IDC White paper, they provide a maturity model to describe this Smart City evolution…”

Frank Diana's avatarReimagining the Future

Next up in this ongoing look at disruptive scenarios is the Smart City. For the first time in history, more than 50% of the world’s population lives in cities, and that percentage moves to 70% by 2050. This visual effectively captures the dramatic move towards urbanization:

Urbanization Statistics

View original post 1,802 more words

Bosch Buys Arizona Building Technology Firm

“Climatec is an independent single-source integrator of critical building systems including energy services, building automation and security system integration in the U.S. market. The company provides consulting, planning, implementation and around-the-clock remote management of comprehensive comfort, security, safety and efficiency solutions. Climatec is active in education, healthcare, the public sector, industrial/manufacturing, computing services, office buildings, federal, state and local government, hospitality and energy.”

esdmattroush's avatarTechCentury.com

FARMINGTON HILLS — Farmington Hills-based Robert Bosch North America Corp. has acquired Climatec LLC, a Phoenix, Ariz.-based provider of energy efficiency, building automation, security and safety products and services.

Climatec generated sales of $170 million in 2013, and according to preliminary figures hit $190 million in sales in 2014. The company employs 670 people at 12 offices in Arizona, California, Nevada and Texas.

Climatec has been owned by Pegasus Capital Advisors, L.P. since April 2012. Terms of the transaction were not disclosed.

View original post 501 more words

Water Waste, Leaking Pipes and Infrastructure Maintenance

Imagine Manhattan under 300 feet of water, not from a flood or rising sea level, but from the 2.1 trillion gallons of water lost from leaky pipes every year. That is nearly 6 billion gallons a day! The majority of leaks are a result of old infrastructure, pressure changes in the water mains, and small household leaks.

Source: theenergycollective.com

>”[…] Infrastructure leaks

About 14-18% of water treated in the United States is wasted through aging and damaged infrastructure, as well as faulty meters. The American Society of Civil Engineers recently gave the US a “D” grade for water infrastructure. Let’s take a look at a few cities around the US.

Chicago wastes about 22 billion gallons of treated water a year, enough to serve 700,000 individual needs for a whole year.The state of California loses about 228 billion gallons a year, which is more than the city of LA uses in a year. On average the state loses 49 gallons a day for every service connection, and Sacramento loses a whopping 135 gallons per connection.In 2013 San Francisco experienced over 100 water main breaks and New York averages over 400 a year.Houston lost 22 billion gallons of water in 2013, 15% of its total water supplyAccording to the EPA we lose about 34 billion gallons of drinking water a day in the United States, about 1/6 of public water systems supply.

Household water waste

Average household leaks can add up to over 10,000 gallons of water a year, enough water to wash 270 loads of laundry. Nationally, household water waste totals over a trillion gallons – or the equivalent of 11 million households’ yearly usage. The most common types of leaks at the household level are worn toilet flappers, dripping faucets, and leaky showerheads. 10% of US homes waste over 90 gallons a day just from these small fixtures. Here are some quick facts:

  • Faucets: 1 drip/second adds up to over 3,000 gallons a year (you can take 180 showers with that water!)
  • a showerhead leaking at 10 drips/minute wastes over 500 gallons a year (that’s 60 loads of dishes)
  • Old inefficient toilets can water up to 13,000 gallons a year
  • Irrigation leaks just the size of a dime will waste nearly 6,300 gallons a month

[…] Fixing easy leaks can save about 10% on your monthly water bill. Replacing that old toilet with a new efficient toilet could save you upwards of $2,400 over the toilet’s lifetime. […]”<

See on Scoop.itGreen & Sustainable News

Idle Load Reduction Strategies for Energy Efficiency Gains and Clean Air

NRDC: Always-on but inactive devices may cost Americans $19 billion and 50 power plants’ worth of electricity annually.

Source: www.nrdc.org

>”  […]  Idle load or “baseload” electricity consumption includes appliances and equipment in off or “standby” mode but still drawing power; in “sleep mode” ready to power up quickly; and left fully on but inactive. Much of this always-on energy provides little or no benefit to the consumer because most devices are not performing their primary function and home occupants are not actively using them.

The Natural Resources Defense Council partnered with Home Energy Analytics and the Stanford Sustainable Systems Lab to assess the impact of the growing cohort of always-on devices on consumer utility bills. We used three separate data sets: smart meter data from 70,000 northern California homes; smart meter and additional information for 2,750 San Francisco Bay Area homes; and a detailed in-home audit of 10 Bay area homes.

We found that “always-on” electricity use by inactive devices represents on average nearly 23 percent of northern California household electricity consumption.

But if all homes in the United States reduced their always-on load for inactive devices to the level that a quarter of the homes in our study already achieve, it would:

save consumers $8 billion on their annual utility bills,avoid 64 billion kilowatt-hours of electricity use per year, andprevent 44 million metric tons of carbon dioxide pollution, or 4.6 percent of U.S. residential sector carbon dioxide (CO2) emissions from electricity generation.

[…] Ensuring that electronics, appliances, and miscellaneous electrical devices consume only as much electricity as necessary when unused presents a huge opportunity to save energy and money. Eliminating this energy waste also decreases the number of fossil fuel–burning power plants necessary to generate electricity, thereby reducing harmful air pollutants and carbon emissions that threaten our health and the environment.

Given that these power plants account for nearly 40 percent of U.S. carbon pollution, smarter energy use can have a measurable impact on overall emissions and would help states comply with emissions reduction targets under the government’s Clean Power Plan to set the first-ever limits on this dangerous pollution. In addition, optimizing energy use helps eliminate the need to build new expensive energy infrastructure, saving utilities and their customers money.

In the meantime, consumers can take these steps in their homes and businesses:

Optimize the efficiency of their current devices;Buy more efficient appliances, electronics, and miscellaneous devices, such as those labeled ENERGY STAR™, whether replacing old models or purchasing new ones;Urge lawmakers to enact idle load labeling so shoppers can avoid products with high idle loads; andInsist that all devices be required to meet idle load efficiency standards so there is no need to worry about models needlessly wasting electricity, the same way regulatory mechanisms ensure that our vehicles are safe to drive and foods are safe to eat.  “<

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

DOE Invests in Super-Critical Carbon Dioxide Turbine Research to Replace Steam for Electric Power Generators

The U.S. Department of Energy hopes to create a more efficient turbine that uses CO2 to make electricity

Source: www.scientificamerican.com

“> […]

Whether burning coal, concentrating sunlight or splitting atoms, most thermal power plants use the energy for the same thing: heating water into steam to drive a turbine. Steam-based generation produces 80 percent of the world’s electricity.

After more than a century of incremental improvements in the steam cycle, engineers have plucked most of the low-hanging fruit and are chasing diminishing returns, spending millions of dollars for every percentage point of efficiency improvement. These upgrades propagate to other steps in electricity production, allowing power plants to extract more work for a given unit of fuel.

In a fossil fuel-fired generator, this means less carbon dioxide emissions for the same unit of electricity produced. For a solar thermal plant, this results in higher capacity at lower operating costs.

Now engineers are looking into replacing steam with supercritical carbon dioxide, a technique that could unlock up to 50 percent greater thermal efficiency using a smaller, cheaper turbine.

Last month, in a budget briefing and in two different hearings before Congress, Energy Secretary Ernest Moniz specifically mentioned the Department of Energy’s supercritical carbon dioxide initiatives. The department’s 2016 budget request allocates $44 million for research and development on this front, including a 10-megawatt supercritical turbine demonstration system.

A simpler, smaller, cleaner machine
The term “supercritical” describes the state of carbon dioxide above its critical temperature and pressure, 31 degrees Celsius and 73 atmospheres. Under these conditions, carbon dioxide has a density similar to its liquid state and fills containers the way it would as a gas.

Coffee producers are already using supercritical carbon dioxide to extract caffeine from beans. Materials companies are also using it to make plastics and ceramics.

“From a thermodynamic perspective, it’s a very good process fluid,” said Klaus Brun, machinery director at the Southwest Research Institute, a nonprofit research and development group. “You get a fairly efficient cycle and a reasonable firing temperature.”

In its supercritical state, carbon dioxide is nearly twice as dense as steam, resulting in a very high power density. Supercritical carbon dioxide is easier to compress than steam and allows a generator to extract power from a turbine at higher temperatures.

The net result is a simpler turbine that can be 10 times smaller than its steam equivalent. A steam turbine usually has between 10 and 15 rotor stages. A supercritical turbine equivalent would have four.

“We’re looking at a turbine rotor shaft with four stages on it that’s 4 inches in diameter, 4 feet long and could power 1,000 homes,” said Richard Dennis, turbine technology manager at the National Energy Technology Laboratory.

He noted that the idea of a supercritical carbon dioxide power cycle dates back to the 1940s, but steam cycles were already very efficient, well-understood and cheap, creating an uphill slog for a new power block to catch on. In addition, engineers were still finding ways to improve the combustion side of power production, so the need to improve the generation side of the plant wasn’t as acute until recently. […]”<

See on Scoop.itGreen Energy Technologies & Development

Closed Loop Cooling Saves Millions of Gallons of Water in Texas Combined Cycle Natural Gas Power Plant

Source: gereports.ca

>” […] Instead of water, each of the two plants will use two powerful air-cooled “Harriet” gas turbines and one air-cooled steam turbine developed by GE. “The technology uses the same cooling principle as the radiator in your car,” Harris says. “You blow in the air and it cools the medium flowing in closed loops around the turbines.”

The power plants, which are expected to open next year, will be using a so-called combined cycle design (see image below) and produce power in two steps. First, the two gas turbines (in the center with exhaust stacks) extract energy from burning natural gas and use it to spin electricity generators. But they also produce waste heat.

The system sends the waste heat to a boiler filled with water, which produces steam that drives a steam turbine to extract more energy and generate more power.

But that’s easier said than done. The steam inside the steamturbine moves in a closed loop and needs to be cooled down back to water so it could be heated up again in the boiler. “Normally, we cool this steam with water, which evaporates and cools down in huge mechanical cooling towers,” says GE engineer Thomas Dreisbach. “A lot of the cooling water escapes in those huge white clouds you sometimes see rising from towers next to power plants.” The Exelon design is using a row of powerful fans and air condensers (rear right) to do the trick and save water.

Similar to the steam turbines, GE’s Harriet gas turbines also use air to chill a closed loop filled with the coolant glycol and reduce the temperature inside the turbine. The combined efficiency of the plant will approach 61 percent, which in the power-generation industry is like running a sub 4-minute mile. […]”<

 

 

See on Scoop.itGreen Energy Technologies & Development

Facts About Solar Powered LED Lights

Clearworld Solutions's avatarClearworld Solutions

led street lamps

In spite of all the hype about combating global warming and switching to environmentally friendly sources, little attention has been given to the streetlights. Whilst they are crucial to the public, they are very energy consuming, and their servicing is costly. Thus, it is worthy of note when a big city like Los Angeles reports that it will replace 140,000 streetlights with LEDs.

LEDs are attaining traction as a great alternative to conventional lighting because they are relatively environmentally friendly, don’t consume much power and have long life spans. They survive so long, 14 years or more in some instances, that they can be regarded as “semi-permanent”.

Several of the most significant electronic firms see LEDs as the destiny of lighting. The LED market of seasonal lights, lights on the Empire State Building, and so on, is estimated to have a worth of $1 billion by 2013.

In earlier times…

View original post 341 more words