Microgrid as a Service (MaaS) and the Blockchain

It is a splendid event to observe when two new technologies combine to create a new marketplace. In recent years as new sources of distributed energy have been entering the electrical grid to provide power they are necessitating a change to the existing large-scale infrastructure model of power supply.

Classic Electric Power Grid Model

Figure 1. Classic electric power grid model with bulk generators transferring power long distances to reach the consumer.  Image courtesy of NetGain Energy Advisors. (1)

The old model utility was large and centralized and tracking transactions was simple as consumers were on one side of the ledger, while the provider as on the other. And whereby currency and energy flowed only in opposite directions between two identified parties, consumer and provider.

In the emerging markets of small-scale independent energy providers, we can see buildings, communities and even individual residences having built capacity to provide intermittently or on demand power at times, and consume or store power from the grid at other times. Solar power is only available during the day, and will require new commercial methods of energy storage.

How-Microgrids-Work

Figure 2. An example Microgrid (2)

In the transition from decentralized utility is the development of the Micro-grid.  The Micro-grid offers many benefits to society, including; (a) use of renewable energy sources that reduce or eliminate the production of GHG’s, (b) increases in energy efficiency of energy transmission due to shortening of transmission distances and infrastructure, (c) improved municipal resilience against disaster and power reductions, and finally, (d) promotion of economic activity that improves universal standard of living.

As buildings and communities evolve they are moving toward renewable energy sources to supplement their energy requirements and reduce operating costs. Even the building codes are getting into the act, requiring buildings be constructed to new energy efficiency standards. Also, we are seeing the development of new technologies and business methods, such as solar powered charging stations for electric vehicles.

The existing electrical grid and utility model has to develop and adapt to these new technologies and means of locally generating power. The future will include the development and incorporation of peer to peer networks and alternative energy supply methods. Consumers may purchase power from multiple sources, and produce power and supply it to other users via the electrical grid.

Micro-grid and the Blockchain

As new energy sources/providers emerge there is added complexity to the network. Consumers of power can also be an energy providers, as well as having different energy sources available. This increased functionality raises the complexity of possible transactions in the network.

Imagine a financial ledger, where each user in the system is no longer constrained to be a consumer, but also a supplier to other users in the system. In order to track both the credits and debits it has been proposed that the exchange of blockchain tokens be utilized to sort out complicated energy transfer transactions in a distributed P2P network.

P2P TRADING

This class of Platform Application gives retailers the ability to empower consumers (or in an unregulated environment, the consumers themselves) to simply trade electricity with one another and receive payment in real-time from an automated and trustless reconciliation and settlement system. There are many other immediate benefits such as being able to select a clean energy source, trade with neighbors, receive more money for excess power, benefit from transparency of all your trades on a blockchain and very low-cost settlement costs all leading to lower power bills and improved returns for investments in distributed renewables. (3)

One blockchain based energy token that has caught my attention is called POWR and is currently in pre-ICO sales of the tokens by the Australian platform Power Ledger. One of the uses of the platform that is being suggested is peer to peer trading.

 “We are absolutely thrilled with the results of the public presale,” says Dr Jemma Green, co-founder and chair of Power Ledger. “Selling out in just over 3 days is a very strong performance in line with global ICO standards, which speaks to the strong levels of interest from consumer and institutional buyers.”

The proceeds from the total pre sale were AU$17 million and the main sale on Friday offers approximately 150 million POWR tokens (subject to final confirmation before the sale opens) in an uncapped sale, meaning that the level of market demand will have set the final token price at the end of the sale. (4)

 

References

  1. The Changing Power Landscape
  2. Siemens – Microgrid Solutions
  3. Power Ledger Applications
  4. PRESS RELEASE Having Closed $17M In Their Presale ICO, Power Ledger Confirm Their Public Sale Will Commence on 8th September 2017
Advertisement

A Modern Renaissance of Electrical Power: Microgrid Technology – Part 1

NYC First Power Grid - Edison #2.png

Figure 1:  The original Edison DC microgrid in New York City, which started operation on September 4, 1882 (1)

A.  Historical Development of Electric Power in the Metropolitan City

The development of electricity for commercial, municipal and industrial use developed at a frantic pace in the mid to late 1800’s and early 1900’s.  The original distribution system consisted of copper wiring laid below the streets of New York’s east side.  The first power plants and distribution systems were small compared to today’s interconnected grids which span nations and continents.  These small “islands” of electrical power were the original microgrids.  In time they grew to become the massive infrastructure which delivers us electrical power we have become dependent upon for the operation of our modern society.

1) Let There Be Light! – Invention of the Light Bulb

When electricity first came on the scene in the 1800’s it was a relatively unknown force. Distribution systems from a central plant were a new concept originally intended to provide electric power for the newly invented incandescent light bulb.  Thomas Edison first developed a DC power electric grid to test out and prove his ideas in New York, at the Manhattan Pearl Street Station in the 1870’s.  This first “microgrid” turned out to be a formidable undertaking.

[…] Edison’s great illumination took far longer to bring about than he expected, and the project was plagued with challenges. “It was massive, all of the problems he had to solve,” says writer Jill Jonnes, author of Empires of Light: Edison, Tesla, Westinghouse, and the Race to Electrify the World, to PBS. For instance, Edison had to do the dirty work of actually convincing city officials to let him use the Lower East Side as a testing ground, which would require digging up long stretches of street to install 80,000 feet insulated copper wiring below the surface.

He also had to design all of the hardware that would go into his first power grid, including switchboards, lamps, and even the actual meters used to charge specific amounts to specific buildings. That included even the six massive steam-powered generators—each weighing 30 tons—which Edison had created to serve this unprecedented new grid, according to IEEE. As PBS explains, Edison was responsible for figuring out all sorts of operational details of the project—including a “bank of 1,000 lamps for testing the system:” (1)

Although Edison was the first to develop a small DC electrical distribution system in a city, there was competition between DC and AC power system schemes in the early years of electrical grid development.  At the same time, there were a hodge-podge of other power sources and distribution methods in the early days of modern city development.

In the 1880s, electricity competed with steam, hydraulics, and especially coal gas. Coal gas was first produced on customer’s premises but later evolved into gasification plants that enjoyed economies of scale. In the industrialized world, cities had networks of piped gas, used for lighting. But gas lamps produced poor light, wasted heat, made rooms hot and smoky, and gave off hydrogen and carbon monoxide. In the 1880s electric lighting soon became advantageous compared to gas lighting. (2)

2) Upward Growth – Elevators and Tall Buildings

Another innovation which had been developing at the same time as electrical production and distribution, was the elevator, a necessity for the development of tall buildings and eventually towers and skyscrapers .  While there are ancient references to elevating devices and lifts, the original electric elevator was first introduced in Germany in 1880 by Werner von Siemens (3).  It was necessary for upward growth in urban centers that a safe and efficient means of moving people and goods was vital for the development of tall buildings.

Later in the 1800s, with the advent of electricity, the electric motor was integrated into elevator technology by German inventor Werner von Siemens. With the motor mounted at the bottom of the cab, this design employed a gearing scheme to climb shaft walls fitted with racks. In 1887, an electric elevator was developed in Baltimore, using a revolving drum to wind the hoisting rope, but these drums could not practically be made large enough to store the long hoisting ropes that would be required by skyscrapers.

Motor technology and control methods evolved rapidly. In 1889 came the direct-connected geared electric elevator, allowing for the building of significantly taller structures. By 1903, this design had evolved into the gearless traction electric elevator, allowing hundred-plus story buildings to become possible and forever changing the urban landscape. Multi-speed motors replaced the original single-speed models to help with landing-leveling and smoother overall operation.

Electromagnet technology replaced manual rope-driven switching and braking. Push-button controls and various complex signal systems modernized the elevator even further. Safety improvements have been continual, including a notable development by Charles Otis, son of original “safety” inventor Elisha, that engaged the “safety” at any excessive speed, even if the hoisting rope remained intact. (4)

The-Story-In-Elevators-And-Escalators-274

Figure 2:  The Woolworth Building at 233 Broadway, Manhattan, New York City – The World’s Tallest Building, 1926 (5)

3) Hydroelectric A/C Power – Tesla, Westinghouse and Niagara Falls

Although Niagara Falls was not the first hydroelectric project it was by far the largest and from the massive power production capacity spawned a second Industrial Revolution.

“On September 30, 1882, the world’s first hydroelectric power plant began operation on the Fox River in Appleton, Wisconsin. […] Unlike Edison’s New York plant which used steam power to drive its generators, the Appleton plant used the natural energy of the Fox River. When the plant opened, it produced enough electricity to light Rogers’s home, the plant itself, and a nearby building. Hydroelectric power plants of today generate a lot more electricity. By the early 20th century, these plants produced a significant portion of the country’s electric energy. The cheap electricity provided by the plants spurred industrial growth in many regions of the country. To get even more power out of the flowing water, the government started building dams.” (6)

pic4.jpg

Figure 3:  The interior of Power House No. 1 of the Niagara Falls Power Company (1895-1899) (7)

niagaraplant.jpg

Figure 4:  Adam’s power station with three Tesla AC generators at Niagara Falls, November 16, 1896. (7)

Electrical Transmission, Tesla and the Polyphase Motor

The problem of the best means of transmission, though, would be worked out not by the commission but in the natural course of things, which included great strides in the development of AC. In addition, the natural course of things included some special intervention from on high (that is, from Edison himself).

But above all, it involved Tesla, probably the only inventor ever who could be put in a class with Edison’s in terms of the number and significance of his innovations. The Croatian-born scientific mystic–he spoke of his insight into the mechanical principles of the motor as a kind of religious vision–had once worked for Edison. He had started out with the Edison Company in Paris, where his remarkable abilities were noticed by Edison’s business cohort and close friend Charles Batchelor, who encouraged Tesla to transfer to the Edison office in New York City, which he did in 1884. There Edison, too, became impressed with him after he successfully performed a number of challenging assignments. But when Tesla asked Edison to let him undertake research on AC–in particular on his concept for an AC motor–Edison rejected the idea. Not only wasn’t Edison interested in motors, he refused to have anything to do with the rival current.

So for the time being Tesla threw himself into work on DC. He told Edison he thought he could substantially improve the DC dynamo. Edison told him if he could, it would earn him a $50,000 bonus. This would have enabled Tesla to set up a laboratory of his own where he could have pursued his AC interests. By dint of extremely long hours and diligent effort, he came up with a set of some 24 designs for new equipment, which would eventually be used to replace Edison’s present equipment.

But he never found the promised $50,000 in his pay envelope. When he asked Edison about this matter, Edison told him he had been joking. “You don’t understand American humor,” he said. Deeply disappointed, Tesla quit his position with the Edison company, and with financial backers, started his own company, which enabled him to work on his AC ideas, among other obligations.

The motor Tesla patented in 1888 is known as the induction motor. It not only provided a serviceable motor for AC, but the induction motor had a distinct advantage over the DC motor. (About two-thirds of the motors in use today are induction motors.)

The idea of the induction motor is simplicity itself, based on the Faraday principle. And its simplicity is its advantage over the DC motor.

An electrical motor–whether DC or AC–is a generator in reverse. The generator operates by causing a conductor (armature) to move (rotate) in a magnetic field, producing a current in the armature. The motor operates by causing a current to flow in an armature in a magnetic field, producing rotation of the armature. A generator uses motion to produce electricity. A motor uses electricity to produce motion.

The DC motor uses commutators and brushes (a contact switching mechanism that opens and closes circuits) to change the direction of the current in the rotating armature, and thus sustain the direction of rotation and direction of current.

In the AC induction motor, the current supply to the armature is by induction from the magnetic field produced by the field current.  The induction motor thus does away with the troublesome commutators and brushes (or any other contact switching mechanism). However, in the induction motor the armature wouldn’t turn except as a result of rotation of the magnetic field, which is achieved through the use of polyphase current. The different current phases function in tandem (analogous to pedals on a bicycle) to create differently oriented magnetic fields to propel the armature.  

Westinghouse bought up the patents on the Tesla motors almost immediately and set to work trying to adapt them to the single-phase system then in use. This didn’t work. So he started developing a two-phase system. But in December 1890, because of the company’s financial straits–the company had incurred large liabilities through the purchase of a number of smaller companies, and had to temporarily cut back on research and development projects–Westinghouse stopped the work on polyphase. (8)

4) The Modern Centralized Electric Power System

After the innovative technologies which allowed expansion and growth within metropolitan centers were developed there was a race to establish large power plants and distribution systems from power sources to users.  Alternating Current aka AC power was found to the preferred method of power transmission over copper wires from distant sources.  Direct Current power transmission proved problematic over distances, generated resistance heat resulting in line power losses. (9)

440px-New_York_utility_lines_in_1890

Figure 5:  New York City streets in 1890. Besides telegraph lines, multiple electric lines were required for each class of device requiring different voltages (11)

AC has a major advantage in that it is possible to transmit AC power as high voltage and convert it to low voltage to serve individual users.

From the late 1800s onward, a patchwork of AC and DC grids cropped up across the country, in direct competition with one another. Small systems were consolidated throughout the early 1900s, and local and state governments began cobbling together regulations and regulatory groups. However, even with regulations, some businessmen found ways to create elaborate and powerful monopolies. Public outrage at the subsequent costs came to a head during the Great Depression and sparked Federal regulations, as well as projects to provide electricity to rural areas, through the Tennessee Valley Authority and others.

By the 1930s regulated electric utilities became well-established, providing all three major aspects of electricity, the power plants, transmission lines, and distribution. This type of electricity system, a regulated monopoly, is called a vertically-integrated utility. Bigger transmission lines and more remote power plants were built, and transmission systems became significantly larger, crossing many miles of land and even state lines.

As electricity became more widespread, larger plants were constructed to provide more electricity, and bigger transmission lines were used to transmit electricity from farther away. In 1978 the Public Utilities Regulatory Policies Act was passed, making it possible for power plants owned by non-utilities to sell electricity too, opening the door to privatization.

By the 1990s, the Federal government was completely in support of opening access to the electricity grid to everyone, not only the vertically-integrated utilities. The vertically-integrated utilities didn’t want competition and found ways to prevent outsiders from using their transmission lines, so the government stepped in and created rules to force open access to the lines, and set the stage for Independent System Operators, not-for-profit entities that managed the transmission of electricity in different regions.

Today’s electricity grid – actually three separate grids – is extraordinarily complex as a result. From the very beginning of electricity in America, systems were varied and regionally-adapted, and it is no different today. Some states have their own independent electricity grid operators, like California and Texas. Other states are part of regional operators, like the Midwest Independent System Operator or the New England Independent System Operator. Not all regions use a system operator, and there are still municipalities that provide all aspects of electricity. (10)

 

800px-Electricity_grid_simple-_North_America.svg.png

Figure 6:  Diagram of a modern electric power system (11)

A Brief History of Electrical Transmission Development

The first transmission of three-phase alternating current using high voltage took place in 1891 during the international electricity exhibition in Frankfurt. A 15,000 V transmission line, approximately 175 km long, connected Lauffen on the Neckar and Frankfurt.[6][12]

Voltages used for electric power transmission increased throughout the 20th century. By 1914, fifty-five transmission systems each operating at more than 70,000 V were in service. The highest voltage then used was 150,000 V.[13] By allowing multiple generating plants to be interconnected over a wide area, electricity production cost was reduced. The most efficient available plants could be used to supply the varying loads during the day. Reliability was improved and capital investment cost was reduced, since stand-by generating capacity could be shared over many more customers and a wider geographic area. Remote and low-cost sources of energy, such as hydroelectric power or mine-mouth coal, could be exploited to lower energy production cost.[3][6]

The rapid industrialization in the 20th century made electrical transmission lines and grids a critical infrastructure item in most industrialized nations. The interconnection of local generation plants and small distribution networks was greatly spurred by the requirements of World War I, with large electrical generating plants built by governments to provide power to munitions factories. Later these generating plants were connected to supply civil loads through long-distance transmission. (11)

 

To be continued in Part 2:  Distributed Generation and The Microgrid Revolution

 

References:

  1. The Forgotten Story Of NYC’s First Power Grid  by Kelsey Campbell-Dollaghan
  2. The Electrical Grid – Wikipedia
  3. The History of the Elevator – Wikipedia
  4. Elevator History – Columbia Elevator
  5. The History of Elevators and Escalators – The Wonder Book Of Knowledge | by Henry Chase (1921)
  6. The World’s First Hydroelectric Power Station
  7. Tesla Memorial Society of New York Website 
  8. The Day They Turned The Falls On: The Invention Of The Universal Electrical Power System by Jack Foran
  9. How electricity grew up? A brief history of the electrical grid
  10. The electricity grid: A history
  11. Electric power transmission

Smart Grid Testbed For Industrial Electrical Grid Innovation

Industrial Internet Consortium announces first energy-focused testbed.

Source: www.cbronline.com

The Communication and Control Testbed for Microgrid Applications, the first energy-focused testbed, was today [Mar 27/2015] announced by the Industrial Internet Consortium.

Member organisations including Real-Time Innovations (RTI), National Instruments, and Cisco, will collaborate on the project, working with power utility firms CPS Energy and Southern California Edison. Additionally, Duke Energy and power industry organisation Smart Grid Interoperability Panel (SGIP) will be also involved.

In order to put an end to renewable energy waste in neighbourhoods or businesses, a new architectural innovation was found to be needed.

Today’s power grid relies on a central-station architecture, which is not designed to interconnect distributed and renewable power sources such as roof-top solar and wind turbines. The system must over-generate power to compensate for rapid variation in power generation or demands.

The Communication and Control Testbed will introduce the flexibility of real-time analytics and control to increase efficiencies, ensuring that power is generated more accurately and reliably to match demand.

The solution proposes re-architecting electric power grids to include a series of distributed microgrids which will control smaller areas of demand with distributed generation and storage capacity.

These microgrids will operate independently from the main electric power grid, but will still interact and be coordinated with the existing infrastructure.

In order to ensure a coordinated, accepted architecture based on modern, cross-industry industrial internet technologies, companies taking part in the venture will work with Duke Energy and SGIP.

The Communications and Control framework will be developed in three phases, with initial developments being tested in Southern California Edison’s Controls Lab in Westminster, CA.

The final stage of the project will culminate in a field deployment that will take place at CPS Energy’s “Grid-of-the-Future” microgrid test area in San Antonio, Texas.

Stan Schneider, RTI’s CEO and IIC Steering Committee member, said: “The smart grid is a critical infrastructure component of the Industrial Internet of Things.

“The IIoT will span industries, sensor to cloud, power to factory, and road to hospital. This key first step will address a significant barrier to the efficient use of green energy.” […]”<

See on Scoop.itGreen Energy Technologies & Development

Changes in the Electrical and Micro Grid

See on Scoop.itGreen & Sustainable News

Microgrids are becoming a worldwide phenomenon. Currently an estimated $4.5 billion market in the US alone with 1,459 MW online and 1,122 MW in planning or development, the microgrid market is expected to continue to grow as the world demands ever more electricity usage and the grid struggles to keep up. The truth is that the traditional grid was not built to cope with the extraordinary level and fluctuations of present-day demand, and microgrids present the perfect solution. The question (to the utilities) is whether we are ready to embrace the change and adapt.

See on theenergycollective.com