Wind Turbines

rotronicuk's avatarRotronic - BLOG

Its been pretty windy recently, So wind farms are probably doing quite well at the moment. The biggest wind farm in the world, at the moment, is the London array, which can produce 630MW of power.

Wind Energy in General

The future is very encouraging for wind power. The technology is growing exponentially due to the current power crisis and the ongoing discussions about nuclear power plants. Wind turbines are becoming more efficient and are able to produce increased electricity capacity given the same factors.

Facts & figures:

There is over 200 GW (Giga Watts) of installed wind energy capacity in the world.

The Global Wind Energy Council (GWEC) has forecasted a global capacity of 2,300 GW by 2030. This will cover up to 22% of the global power consumption.

WindPower
Converting wind power into electrical power:

A wind turbine converts the kinetic energy of wind into rotational mechanical energy. This energy is directly converted, by a generator, into electrical energy. Large wind turbines typically have a generator installed on top of the tower. Commonly, there…

View original post 489 more words

Russian Energy Producer Rosneft LNG Plant Reported Delayed for Two to Five Years

MOSCOW (Reuters) – Russian energy producer Rosneft may have to delay development of its liquefied natural gas (LNG) plant on the Pacific island of Sakhalin for at least two years, sources said, after prices fell and financing all but dried up due to Western sanctions.

Source: www.reuters.com

>”[…] Rosneft, which has spearheaded President Vladimir Putin’s drive to increase oil and gas output and secure Russia’s energy dominance, signed an agreement with Exxon in 2013 that aimed at starting production of 5 million tonnes per year of LNG from 2018 at Sakhalin.

Russia is the world’s largest exporter of natural gas but mostly exports it by pipeline to customers in Europe. Once liquefied, natural gas can be transported by ship to customers in Asia, helping fulfill the Kremlin’s goal of finding new markets.

Two sources with direct knowledge of the project said the 2018 target was no longer realistic.

A source at Rosneft, who declined to be named because he was not authorized to speak to the media, said the plant would most probably “be postponed for three to five years because of lack of funds and low fuel prices”.

A second source said it could be delayed for two years.

“This is not a surprise,” the source said. “The year 2018 had never been seen as the final deadline. All the stuff that’s happening – a decline in LNG prices, a slump in demand, the economic crisis – only confirms that.”

A Rosneft company spokesman said there had been no change to the project’s timeline: “Rosneft has not revised the terms for the implementation of the far east LNG project.”

Exxon’s Moscow office declined to comment. A spokesman at Exxon’s headquarters in Texas also declined to comment.

In May 2014, Rosneft and Exxon signed a deal to continue work on the LNG plant, which will be partly fed from gas produced at Sakhalin-1, an oil and gas project in which Exxon is a major investor. […]”<

See on Scoop.itGreen & Sustainable News

Woodfibre LNG Plant: Old Technology, Design Flaws and Environmental Issues

Speakers at a presentation in West Vancouver on the risks associated with the proposed LNG project in Howe Sound voiced concerns, Wednesday, over everything from environmental contamination to the risk of explosions from transporting natural gas.

Source: www.nsnews.com

>”[…] “Canada doesn’t have a whole pile of rules about LNG because it doesn’t have a whole pile of plants,” said Eoin Finn a seasonal resident of Bowyer Island in Howe Sound, and speaker at the event. Finn holds a PhD in physical chemistry and is a close follower of the LNG project.

He said an LNG plant of this size has never before existed in Canada. He has concerns over the country’s lack of environmental regulations in place against this particular resource.

“There are no plants on the West Coast of Canada nor on the U.S. except a tiny one in Alaska but that’s 100 miles from anywhere and it’s about one-tenth (the size of) Woodfibre.”

When it comes to the risks associated with the proposed development, Finn said there are many, including emissions output, the risk of shipping accidents and the plant’s cooling system, which would use seawater.

“One of the big issues is that the plant will be cooled by seawater from the sound. This is pretty old technology that’s been dismissed and refused and abandoned in California and Europe.”

He said that the current proposed cooling system for the plant would suck in 17,000 tonnes of seawater (3.7 million gallons) per hour, and chlorinate it while it circulates through the system, before releasing it back into Howe Sound.

Finn explained that any such practice would be “extremely damaging” to marine life and that similar systems down the coast in California have been banned.

Although the plant will be powered by electricity, Finn said it will still produce emissions, including 140,000 tons of carbon dioxide a year.

Among Finn’s other concerns was tanker traffic associated with the project, which would see between six and eight tankers navigating through the sound per month.

He cited a risk of explosions associated with the ships, which could have potential negative effects on area property values. Large waves generated from those vessels could also be a problem for the area, something Finn compared to the BC Ferries Fast Cat situation years before.  […]

Wade Davis, Bowen Island resident and professor of anthropology, said the issue of whether or not the plant will go in place holds a deeper meaning than simply a local environmental danger.

“This is not simply about a local issue in Howe Sound, this is a metaphor for who we are to be as a people,” he explained to the audience. “If we are actually prepared to invest our lives in this way, the most glorious fjord in the world, what else in our country will be immune to such violations?” he asked.  […]”<

 

See on Scoop.itGreen & Sustainable News

UK Green Investment Bank Raises £463m on its planned £1bn Offshore Wind Farm Fund

The UK Green Investment Bank plc (GIB) has announced that its FCA regulated subsidiary, UK Green Investment Bank Financial Services Limited (GIBFS), has reached first close on commitments of £463m on its planned £1bn fund to invest in operating offshore wind farms in the UK.

Source: www.greeninvestmentbank.com

>” […] £463m of capital raised at first close, to be invested in UK offshore wind projects.Investors include UK pension funds and a sovereign wealth fund.Innovative transaction creating the world’s first dedicated offshore wind fund.This is the first fund raised by the GIB group, a first move into asset management and the first time it has managed private capital since its formation.This announcement marks the end of GIB’s financial year. It committed £723m to 22 green energy projects across the UK in 2014/15. GIB has now backed 46 UK projects with a total value of almost £7bn.

The UK Green Investment Bank plc (GIB) has announced that its FCA regulated subsidiary, UK Green Investment Bank Financial Services Limited (GIBFS), has reached first close on commitments of £463m on its planned £1bn fund to invest in operating offshore wind farms in the UK.

First close marks the completion of the first stage of fundraising and is triggered by the commitment of an initial group of investors.

The initial investors comprise UK-based pension funds and a major sovereign wealth fund. GIB is also investing £200m in the fund. Fundraising continues and GIBFS expects to raise additional funds from other investors to reach the £1bn target.

In addition to the £463m of fund commitments raised, an additional significant amount of investor capital is available to co-invest into projects alongside the fund.

The fund is an innovative, first-of-a-kind transaction. It is the world’s first fund dedicated to investments in offshore wind power generation and, once fully subscribed, will be the largest renewables fund in the UK. The fund has an expected life of 25 years, allowing a new class of long-term investor to enter the sector.

This is the first fund raised by the GIB group and its first step into asset management. It is also the first private capital to be managed by the GIB group. It will be managed by a new FCA-regulated and authorised subsidiary called UK Green Investment Bank Financial Services Limited which is staffed by a dedicated team.

GIB has now transferred its investments in two operating assets into the fund, which will produce immediate cash yield for investors. They include:

Rhyl Flats. A 90 MW, 25 turbine wind farm operated by RWE Innogy UK off the coast of North Wales. It has been operational since December 2009. GIB has sold its full 24.95% equity stake in the project to the Fund.Sheringham Shoal. A 317 MW, 88 turbine wind farm operated by Statkraft and located in the Greater Wash area off the coast of Norfolk. It has been operational since October 2012. GIB has sold its full 20% equity stake in the project to the fund.

These two offshore wind farms are able to produce 1,290 GWh of renewable energy annually, enough to power 305,000 UK homes. The fund also has a strong pipeline of future investment opportunities.

Evercore Private Funds Group is acting as advisor and exclusive global placement agent for the fundraise and King & Wood Mallesons is acting as legal counsel to the fund. […]”<

See on Scoop.itGreen & Sustainable News

“Behind the Meter” Energy Storage Solution Manages Peak Demand Charges for Buildings

Sharp Electronics Corporation’s […] 30 kW storage system is coupled with Baker’s existing 90 kW solar PV system. Baker Electric, a key channel ally of Sharp, has selected theSmartStorage® solution to help cap expensive utility demand charges for its commercial building customers.

Source: www.marketwired.com

>” […]

Peak demand charges are the fastest growing part of utility bills for commercial and industrial customers and can represent up to 50 percent of a company’s monthly utility bill. The SmartStorage® energy storage solution is a unique battery-based demand management system designed to reduce commercial and industrial buildings’ peak electricity use. It combines Sharp’s intelligent energy management system with cutting-edge hardware, operating seamlessly as a stand-alone solution or when deployed along with a solar system.

“Baker Electric brings decades of experience offering innovative technologies to its customers, including solar solutions in recent years. Their PV solutions coupled with our SmartStorage® energy storage solution provide a powerful duo for building owners wanting to lower peak demand usage without disrupting their day-to-day operations,” commented Carl Mansfield, General Manager of Sharp Electronics Corporation’s Energy Systems and Services Group.

The SmartStorage® system employs sophisticated, predictive analytics and controls to manage the release of energy from the battery, resulting in high performance, high system efficiency and world-class reliability. The SmartStorage® system can also make existing solar installations economically viable where they otherwise would not be.

Baker Electric’s SmartStorage® system installation is backed by Sharp’s innovative 10-year Asset Management Service Agreement which provides all routine and unscheduled maintenance coupled with a 10-year demand reduction performance guarantee.

“Our customers have come to expect the highest quality, highest performing products available on the market. After an exhaustive search in identifying the best solution to help lower demand charges for our customers and our own facility, we chose Sharp’s SmartStorage® system, not only because it exceeds the quality standards we are known for, but because we also have confidence in Sharp standing behind its product by offering its unique 10-year Asset Management Service Agreement and performance guarantee,” said Ted Baker, CEO of Baker Electric.

The SmartStorage® energy storage solution has undergone more than 18 months of field testing benefitting from Sharp’s world-class attention to quality and safety. The energy storage component of Sharp’s SmartStorage® system consists of state-of-the art lithium-ion batteries, which have been tested, listed and labeled as compliant with UL safety standards.

[…]”<

See on Scoop.itGreen Energy Technologies & Development

France now requires all new buildings to have green roofs or solar panels

Susan Davis Cushing's avatarPr0jectClimate

France just passed atrailblazing new lawthat requires that all new buildings constructed in commercial areas to be partially-covered by either solar panels orgreen roofs. Not only will this bring dramatic changes to the nation?s skylines and bolster the efficiency of all new commercial construction, but the law will help France pick up the pace the solar adoption?which has lagged behind other European nations in recent years.

Read more:France requires all new buildings to have green roofs or solar panels | Inhabitat – Sustainable Design Innovation, Eco Architecture, Green Building



Source: inhabitat.com

“Here’s hoping that other nations can soon follow suit.” I had to go back and dig through my sources to make sure I hadn’t dreamed this!

View original post

CloudSolar Helps Renewable Energy Fans Who Can’t Install Their Own Solar Panels

China’s Capital City to Shut Major Coal Power Plants due to Excessive Pollution

(Bloomberg) — Beijing, where pollution averaged more than twice China’s national standard last year, will close the last of its four major coal-fired power plants next year.

Source: www.bloomberg.com

>” […]

The capital city will shutter China Huaneng Group Corp.’s 845-megawatt power plant in 2016, after last week closing plants owned by Guohua Electric Power Corp. and Beijing Energy Investment Holding Co., according to a statement Monday on the website of the city’s economic planning agency. A fourth major power plant, owned by China Datang Corp., was shut last year.

The facilities will be replaced by four gas-fired stations with capacity to supply 2.6 times more electricity than the coal plants.

The closures are part of a broader trend in China, which is the world’s biggest carbon emitter. Facing pressure at home and abroad, policy makers are racing to address the environmental damage seen as a byproduct of breakneck economic growth. Beijing plans to cut annual coal consumption by 13 million metric tons by 2017 from the 2012 level in a bid to slash the concentration of pollutants.

Shutting all the major coal power plants in the city, equivalent to reducing annual coal use by 9.2 million metric tons, is estimated to cut carbon emissions of about 30 million tons, said Tian Miao, a Beijing-based analyst at North Square Blue Oak Ltd., a London-based research company with a focus on China.  […]

Closing coal-fired power plants is seen as a critical step in addressing pollution in China, which gets about 64 percent of the primary energy it uses from the fossil fuel. Coal accounts for about 30 percent of the U.S.’s electricity mix, while gas comprises 42 percent, according to Bloomberg New Energy Finance data.  […]

Air pollution has attracted more public attention in the past few years as heavy smog envelops swathes of the nation including Beijing and Shanghai. About 90 percent of the 161 cities whose air quality was monitored in 2014 failed to meet official standards, according to a report by China’s National Bureau of Statistics earlier this month.

The level of PM2.5, the small particles that pose the greatest risk to human health, averaged 85.9 micrograms per cubic meter last year in the capital, compared with the national standard of 35.

The city also aims to take other measures such as closing polluted companies and cutting cement production capacity to clear the air this year, according to the Municipal Environmental Protection Bureau. […]”<

 

See on Scoop.itGreen & Sustainable News

State and Solar Advocates Complete Legal Agreement for Full Net Metering Credit to Utilities

The Act 236 agreement also settles rules for legal solar leasing.

Source: www.utilitydive.com

>”[…]  The South Carolina Public Service Commission last week approved a settlement agreement between Duke Energy Carolinas, South Carolina Electric & Gas (SCE&G) and major environmental groups that allows rooftop solar owners to get full retail value for electricity their systems send to the grid.The agreement on net energy metering (NEM) is part of Act 236, passed in 2014 after a consultation process involving renewable energy-interested stakeholders. Solar systems installed before the end of 2020 will earn full retail value bill credit for each kilowatt-hour that goes to the grid.Act 236 also legalizes third party ownership of solar, more widely known as solar leasing, and sets up rules by which leasing companies like SolarCity and Sunrun must operate.

Dive Insight:  To study the emerging solar opportunity, a South Carolina General Assembly-created oversight group organized a coalition of environmentalists, solar advocates, and utilities and electric cooperatives into an Energy Advisory Council in 2013. Act 236 was formulated out of its report.

The NEM settlement also raises the size limit of eligible systems from 100 kW to 1 MW and raises the cap on NEM systems from 0.2% of each utility’s peak capacity to 2%.

Act 236 requires leasing companies to be certified by the state and limits the size of leased residential systems to 20kW and leased commercial systems to 1000kW. Leased systems can only serve one customer and one location and cannot sell electricity to third parties. The total of leased solar is capped at no more than 2% of a utility’s residential, commercial, or industrial customers average retail peak demand.

Groups that led the settlement with the utilities include the Coastal Conservation League, the Southern Environmental Law Center, and the Southern Alliance for Clean Energy. […]”<

 

See on Scoop.itGreen Building Operations – Systems & Controls, Maintenance & Commissioning

Global Distributed Energy Storage Capacity Expected to Increase Nearly 10-Fold

The worldwide capacity of distributed energy storage systems is expected to increase nearly 10-fold over the next 3 years, according to a new report from Navigant Research, which analyzed the global market for distributed energy storage systems through 2024.

Source: cleantechnica.com

>” […] The primary conclusion of the report is that distributed storage is one of the fastest-growing markets for energy storage globally, thanks to the focus of rapid innovation and intense competition, causing the market to greatly exceed market expectations. This growth and subsequent demand has led to grid operators, utilities, and governments looking to encourage storage installations that are physically situated closer to the retail electrical customer.

According to the report from Navigant Research, worldwide capacity of distributed energy storage systems (DESSs) is expected to grow from its current 276 MW, to nearly 2,400 MW in 2018.

“Distributed storage is among the fastest-growing markets for energy storage globally,” says Anissa Dehamna, senior research analyst with Navigant Research. “In particular, residential and commercial energy storage are expected to be the focus of technological advances and market activity in the coming years.” […]

Two specific types of DESS are classified in the report: Community energy storage refers to systems installed at the distribution transformer level; Residential and commercial storage, on the other hand, refer to “two behind-the-meter applications targeted at either homeowners or commercial and industrial customers.” Together, these two technologies include lithium ion (Li-ion), flow batteries, advanced lead-acid, and other next-generation chemistries, such as sodium metal halide, ultracapacitors, and aqueous hybrid ion.

Similarly, the two categories of DESS each have specific market drivers. Community energy storage is being driven by the improved reliability yielded in case of outages, load leveling and peak shifting, and improved power quality. Almost as importantly, community energy storage systems can communicate with a grid operator’s operating system, allowing the operator to mitigate disruptions to the grid.

Given its primary use as an energy cost management solution, the prime driver behind commercial storage systems is the rate structure for customers. “<

See on Scoop.itGreen Energy Technologies & Development