Indiana Landfill Gas Energy Project Starts Operations

Republic Services recently announced the start of operations at its latest landfill gas-to-energy project. The new 6 MW project at County Line Landfill involves four engines operating at one energy generation facility.

Source: biomassmagazine.com

>” […] Landfill gas is a natural byproduct of decomposing waste. This project involves extracting gas from within the landfill, processing the extracted gas, and then distributing the processed gas to a generation facility where it is converted into energy that supplies the local electric grid.

According to the U.S. EPA, landfill gas-to-energy projects also reduce reliance on non-renewable energy resources, such as coal or petroleum. The EPA estimates that three megawatts of energy produced from landfill gas is equivalent to preventing carbon emissions generated by the consumption of 16.6 million gallons of gasoline. Based on EPA calculations, the new County Line Landfill gas-to-energy project prevents carbon emissions equivalent to the consumption of more than 32 million gallons of gasoline.

Republic Services partnered with Aria Energy on the design, development and management of the new project. Republic Services and Aria Energy have partnered on four projects to date with a combined generation capacity of more than 39.6 megawatts of electrical power. Republic and Aria are currently working on two additional projects, which combined are expected to create another 15 megawatts of electrical power.

Republic Services has implemented 73 landfill gas-to-energy projects nationwide. Together, these projects harness enough electricity to power or heat approximately 400,000 households. According to the EPA, the combined environmental benefits from these projects are equal to removing more than 4 million cars from our roads or planting more than 4.5 million acres of trees each year. […]”<

See on Scoop.itGreen & Sustainable News

Electricity storage becomes priority as solar and wind energy cost keeps dropping

“And the cost of solar power is declining amazingly. Austin Energy signed a deal recently that a solar farm is selling at 5 cents a kilowatt-hour. A recent study by Lazard gave a cost of 5.6 cents for solar and 1.4 cents for wind power (with current subsidies) or 7.2 cents for solar and 3.7 cents for wind without subsidies. Natural gas came in at 6.1 cents and coal at 6.6 cents. The Solar Energy Industries Association claims that in the Southwest electricity contracts for solar energy have dropped 70 percent since 2008.”

Peter Spitz's avatarchemengineeringposts

imgres The rapid advances in the use of solar and wind energy – more in Europe, but now also gaining momentum in the U.S.- has put electricity “storage” front and center. That is because there is no solar production at night and little on cloudy days, while strong winds are unpredictable in most locations. So, the best “model” for these renewable energy sources is to generate as much as possible at favorable times and to “store” excess production for periods when solar and wind energy supply are low.

And the cost of solar power is declining amazingly. Austin Energy signed a deal recently that a solar farm is selling at 5 cents a kilowatt-hour. A recent study by Lazard gave a cost of 5.6 cents for solar and 1.4 cents for wind power (with current subsidies) or 7.2 cents for solar and 3.7 cents for wind without subsidies. Natural gas came in at…

View original post 303 more words

Snohomish PUD’s Energy Storage Initiative

Climate Change, Carbon Reduction and Mitigating Natural Gas Use in the Electricity Sector

The Environmental Protection Agency’s Clean Power Plan offers states the opportunity to curb rising natural gas use in the United States and achieve steeper carbon-pollution reductions by investing more aggressively in renewable energy and energy efficiency.

Source: www.americanprogress.org

>” […] In the United States, electric utilities are the largest source of carbon pollution. Therefore, the reduction of power-sector emissions needs to be a central component of any meaningful climate mitigation strategy. In June, the Environmental Protection Agency, or EPA, released a landmark proposal to establish the first-ever carbon-pollution standards for the nation’s power plants.

This proposal, the Clean Power Plan, establishes a “best system of emissions reduction” based on four building blocks that combine to make the nation’s electricity system more efficient and less reliant on carbon-heavy coal-burning power plants. […]

One of the Clean Power Plan’s central elements is increasing the use of lower-carbon natural gas combined cycle, or NGCC, units to generate some of the electricity now produced by higher-carbon coal-fired power plants. States can use this approach to achieve relatively quick carbon-pollution reductions starting in 2020 while ramping up the deployment of programs that promote renewable energy and energy efficiency.

The EPA modeled two compliance scenarios to understand the costs, benefits, and potential energy-related impacts of the Clean Power Plan. This modeling suggests that the electricity sector’s natural gas consumption will increase sharply at the beginning of the Clean Power Plan’s implementation period as states shift power generation from dirtier coal-fired plants to cleaner-burning NGCC plants. The EPA also predicts that states will build new NGCC plants to replace retiring coal plants and to help meet their carbon-reduction targets.

By 2030, however, the EPA’s models forecast that more renewable energy and energy-efficiency programs will come online as states continue to implement the Clean Power Plan. Electricity generation from renewable sources will displace some generation from NGCC and coal-fired power plants. Energy-efficiency programs, meanwhile, will reduce electricity demand, slowing generation and curbing carbon pollution from the power sector as a whole. […]

While natural gas burns cleaner than coal, it is still a fossil fuel that releases carbon pollution. In addition, methane, a potent greenhouse gas, can escape throughout the natural gas production and supply cycle. For these reasons, several recent studies by prominent researchers have questioned whether natural gas can form the core of an effective climate mitigation strategy. […]

By acting decisively to implement ambitious renewable energy and energy-efficiency programs, states can help ensure that the United States does not overcommit to natural gas and that it continues on a path toward decarbonization of the economy. […]”<

See on Scoop.itGreen & Sustainable News

European Airlines Contracts Biofuel Supplier For Biofuel Powered Flights

SAS has, along with the Lufthansa Group and KLM, signed an agreement with Statoil Aviation for a regular supply of 2.5 million liters (660,430 gallons) of biofuel at Oslo Airport, allowing the airport to offer a regular supply of biobased fuel.

Source: biomassmagazine.com

>” […] Via an agreement signed with Avinor and the above named airlines, Statoil Aviation is to supply 2.5 million liters (660,430 gallons) of biofuel to the refueling facility at Oslo Airport. With a 50 percent biofuel mix, this will fuel around 3,000 flights between Oslo and Bergen and make OSL the first major airport in the world to offer a regular supply of biofuel as part of daily operations from March 2015. […]

SAS aims to use synthetic fuel on an increasingly regular basis in the next few years, and expects biofuel to become competitive with the fossil fuel alternative. For this to happen, a general environment and tax policy will be required from governments, based on aviation being a form of internationally competitive public transport with thin profit margins.”<

 

See on Scoop.itGreen & Sustainable News

ACEEE Recommends Demand Response as a Strategy to Conquer Peak Demand for Utilities

By Steven Nadel

” … a potential emerging trend that could have a large impact on many utilities: the reduction of the traditional mid-afternoon peak, and the growth of an evening peak. (Peak is the time when demand for power is highest.)”

Source: aceee.org

>” […] In many regions, evening peaks have been growing, as more consumers install air conditioners and operate them when they get home from work. But two other factors are augmenting this trend. First and foremost is the growth in consumer-owned photovoltaic systems. These systems generate the most power on sunny afternoons, which is about when the traditional early afternoon peak occurs. But when the sun goes down, extra power is quickly needed to replace this solar power.  […]

There are many ways to address the growing evening peak, including the following:

  1. Energy efficiency, particularly measures that reduce the evening peak such as efficient lamps, water heaters, stoves and ovens.
  2. Smart controllers that minimize energy use during the evening peak. To provide just one example, a smart refrigerator would not turn on the defrost cycle during this period and might even turn off the main compressor for a few minutes.
  3. Likewise, smart charging systems for electric vehicles could be used, such as a new system recently demonstrated by the Electric Power Research Institute (EPRI), working with a consortium of utilities and auto manufacturers.
  4. Expanded use of demand-response programs to lower the new peak (and coordination of these efforts with energy efficiency programs).
  5. Time-of-use rates and/or demand charges that raise the price of power use during peak times and a lower them at off-peak times.
  6. Use of energy storage at a system, community, or end-user level. Storage able to provide power for several hours could be very useful.Fast ramp-up generation to serve the evening peak and other times when renewable energy production plummets, for example when the wind dies down. Hydro is ideal, but fast ramp-up gas units are now entering the market.

In my opinion, the time of the peak will change in many regions. The shift will be gradual in most areas, so we have time to address it. Rather than trying to stop this change by restricting photovoltaic systems, we’ll be better off figuring out how to manage it, […]”<

See on Scoop.itGreen Energy Technologies & Development

‘Demand Response’ is ‘Disruptive Technology’ Shutting Down Power Plants

FirstEnergy Corp. has a traditional view of wholesale electricity markets: They’re a competition between iron-in-the-ground facilities that can put megawatts on the grid when those megawatts are needed. Think coal plants, nuclear reactors and hydroelectric dams. Missing from the definition is a consumer’s promise to turn off the lights when the grid is stressed — so-called demand response. Instead of creating energy during peak times, demand response resources conserve it, freeing up megawatts […]

Source: powersource.post-gazette.com

>” […]The idea is not new and has been expanding in the territory of PJM Interconnection, a Valley Forge-based grid operator that manages the flow of electricity to 13 states, including Pennsylvania.

FirstEnergy, which owns power plants and utility companies across several states, wants PJM to abandon the demand response concept.

The Ohio-based energy company says demand response, which doesn’t require any kind of capital commitment, is “starving” traditional generation out of its rightful revenue in wholesale markets.

“We feel that it’s going to lead to even more premature closures of power plants,” said Doug Colafella, a spokesman for the firm.

Specifically, FirstEnergy is fighting to get demand response kicked out of PJM’s annual capacity auction, which ensures there’s enough electricity resources to meet projected power demand three years in advance. The auction establishes a single clearing price that will be paid to all successful bidders, like a retainer fee, in exchange for their promise to be available to be called upon three years from now.

During the May auction, which set capacity prices for the 2017-2018 year, the clearing price was $120 a day for each megawatt of electricity bidders committed. About 6 percent, or about 11,000 megawatts, of the capacity secured came from demand response.

FirstEnergy’s Bruce Mansfield coal-fired power plant in Beaver County failed to clear the auction. The company has since postponed upgrades to the facility, which could jeopardize its functioning beyond 2016.

Capacity payments are a stable source of revenue for baseload generation plants, Mr. Colafella said, and a price signal to the market about which way demand is headed, giving generators some indication about whether new facilities will be necessary and profitable.

Demand response distorts that dynamic, he said.

Since May, FirstEnergy has intensified its efforts to drive demand response out of PJM’s markets, having seized on a related court case involving the Federal Energy Regulatory Commission.

“FirstEnergy’s business model is that electricity consumption has been flattening, so they want to take a larger share of the market and how do you take a larger share? You bulldoze everybody out,” said Mei Shibata, CEO of The Energy Agency, a marketing and communications firm and co-author of a recent report on the market for demand response in the U.S. for GreenTech Media Research.

In May, the D.C. Circuit Court vacated a rule created by the Federal Energy Regulatory Commission in 2011 that said demand response should be treated the same way as power plants in wholesale energy markets. That meant demand response providers could offer to shut down a day in advance, when grid operators book electricity for the following day, and get the same price as megawatts from generation.

An electric power industry group sued the FERC claiming that the call to shut off electricity in exchange for payment is a retail choice and retail falls exclusively within state jurisdiction, not federal. The court agreed, setting in motion FirstEnergy’s challenge to demand response in capacity markets, which were not addressed by the court decision. If demand response is a retail product in one context, then it’s a retail product in all, the logic goes.

The same day the court issued its decision, FirstEnergy filed a lawsuit asking a judge to order PJM to recalculate the results of its May capacity auction stripping out demand response.

PJM objected. The Pennsylvania Public Utility Commission, which intervened in that case, charged FirstEnergy with “jumping the gun” on its logic and called its proposal an “unprecedented and wholly unnecessary disruption of the capacity market auction process.”

Even if demand response is excluded from the daily wholesale market as the court decision wills, the market for this resource will continue to expand, said Ms. Shibata.

If, however, FirstEnergy succeeds in kicking demand response out of the capacity market, “that would be a much bigger deal,” she said.

PJM leads the nation in demand response resources, according to Ms. Shibata’s research, and anything that happens to demand response at PJM would likely trickle down to the other grid operators around the country. […]”<

See on Scoop.itGreen Energy Technologies & Development

Lightweight ‘solar cloth’ photovoltaics for Integration with Building Structures

A Cambridge start-up believes its flexible solar panelling solution could fundamentally change the landscape of solar installation in the commercial sector.

The Solar Cloth Company’s award winning flexible thin film photovoltaics (FTFP) are a few micrometres thick and can be integrated into flexible and lightweight tensile structures called building integrated photovoltaics (BIPV). In doing so, they provide an alternative to traditional photovoltaic panels that are heavy and cumbersome.

Source: www.theengineer.co.uk

See on Scoop.itGreen Building Design – Architecture & Engineering

Coal Power Plants Get Repowered With Natural Gas

Old U.S. coal-fired power plants, the target of new anti-pollution rules, aren’t necessarily shutting down. Many are getting a second life as they’re “repowered” with natural gas.

Source: news.nationalgeographic.com

>” […] In the past four years, at least 29 coal units in 10 states have switched to natural gas or biomass, according to SNL Financial, a market data firm. Another 54 units, mostly in the U.S. Northeast and Midwest, are slated to be converted over the next nine years. The future and completed conversions represent more than 12,000 megawatts of power capacity, enough to power all the homes in New England for one year.

By switching to natural gas, plant operators can take advantage of a relatively cheap and plentiful U.S. supply. The change can also help them meet proposed federal rules to limit heat-trapping carbon dioxide emissions from power plants, given that electricity generation from natural gas emits about half as much carbon as electricity from coal does. […]

While conversion advocates say natural gas is a “bridge” fuel that buys time for a transition to clean energy, others argue its use is hindering renewables by delaying them. Many of the planned repowering projects will extend the already long service of fossil-fuel facilities. (Related: “Switch to Natural Gas Won’t Reduce Carbon Emissions Much, Study Finds.”)

“Do you pump a whole bunch of the public’s money into outdated, inefficient infrastructure, or do you say it’s time to move forward and invest in renewable energy and upgraded transmission to move that renewable energy around?” said Kim Teplitsky, deputy secretary of the Northeast Sierra Club’s Beyond Coal campaign. Teplitsky’s group is opposed to the revivals of New York’s Dunkirk, Danskammer, and Cayuga power plants.

Power providers and regulators, on the other hand, point to the need for reliability, especially in extreme weather conditions. “The system requires a certain amount of megawatts and a certain amount of reserve margin to ensure that the system will be stable and reliable at all times,” said Gaier of NRG, which operates both renewable and fossil-fuel units. “The number of megawatts is simply not replaceable in the short term with renewables.” […]”<

 

See on Scoop.itGreen & Sustainable News

Energy Storage Technologies Will Replace Utilities Gas Fired Turbine Peaker Plants

“Power grids need extra generating capacity to work properly. For example, about 20 percent of New York State’s generation fleet runs less than 250 hours a year. Because they don’t run much, “peaker plants” are by design the cheapest and least efficient fossil generators.”

Source: www.renewableenergyworld.com

>”[…] As has happened with solar PV, the costs for multi-hour energy storage are about to undergo a steep decline over the next 2 to 3 years. This cost trend will disrupt the economic rationale for gas-fired simple cycle combustion turbines (CTs) in favor of flexible zero emissions energy storage. This will be especially true for storage assets owned and operated by vertical utilities and distributed near utility substations.

Simple cycle gas-fired CTs have been a workhorse utility asset for adding new peaker capacity for decades. But times and technologies change, and the power grid’s long love affair with gas-fired CTs is about to be challenged by multi-hour energy storage. Flow batteries that utilize a liquid electrolyte are especially cost-effective because the energy they store can be easily and inexpensively increased just by adding more electrolyte.

CTs cost from $670 per installed kilowatt to more than twice that much for CT’s located in urban areas. But the economics of peaking capacity must also reflect the benefits side of the cost/benefit equation. Distributed storage assets can deliver both regional (transmission) and local (distribution) level energy balancing services using the same storage asset. This means the locational value and capacity use factor for distributed storage can be significantly higher compared to CTs operated on a central station basis.

[…]

The disruptive potential of energy storage as a substitute for simple cycle CTs has been recognized. For example, Arizona Public Service (APS) and the Residential Utility Consumer Office (RUCO) recently filed a proposed settlement which, if approved, would require that at least 10% of any new peaker capacity now being planned as simple cycle combustion turbines would instead need to be energy storage — as long as the storage meets the cost effectiveness and reliability criteria of any CTs being proposed.

[…]

Lower cost solar PV and its rising penetration in all market segments will have a profoundly disruptive effect on utility operations and the utility cost-of-service business model. This has already started to happen. Storage offers a way for utilities to replace lost revenues premised on margins from kilowatt-hour energy sales by placing energy storage into the rate based and earning low-risk regulated returns.”<

See on Scoop.itGreen Energy Technologies & Development