Vanadium Battery New Entrant for Grid Energy Storage of Renewables

Renewable energy – solar and wind – works like a charm when the wind is blowing strongly enough to whip windmill blades into a frenzy, or the sun is baking down onto strategically-placed solar panels. The trouble, of course, is that the power they produce is intermittent. Wind has an annoying habit of dying down, as does the sun in hiding behind clouds.

Read more: http://www.nasdaq.com/article/does-vanadium-hold-the-key-to-energy-storage-conundrum-cm369673#ixzz37Yl73KAF

Source: www.nasdaq.com

>"Another alternative has more recently come to the fore, with the technology originating from a metal most have never heard of: vanadium. Named after the Norse goddess of beauty, Vanadis, vanadium’s primary use is for strengthening steel. Dropping a bar of vanadium into a batch of steel allows the steelmaker to use 40 percent less material. The metal is also used in super alloys and in aerospace applications, which require 99.9 percent purity. Henry Ford used it in the first Model T.

Chemists have discovered another use for vanadium, one whose applications are far-reaching. When an electrical current is passed through two tanks of vanadium dissolved in sulfuric acid, it creates a type of rechargeable battery called a “vanadium redox battery”. The battery’s chief advantages are its stability – it can be recharged up to 20,000 times without losing performance, meaning a potential decades-long life – and it can be discharged while retaining nearly all of the vanadium electrolyte. Vanadium redox batteries are also scalable, meaning they offer nearly unlimited capacity by simply scaling up to larger storage tanks.

While the technology is still nascent and expensive, one company is charging ahead with ambitions to open the first vanadium mine in the United States and become the lynchpin of a new power storage market in North America.

American Vanadium plans to use vanadium mined from its Gibellini project in Nevada as feedstock for vanadium electrolyte used in vanadium flow batteries; last year the company showed the seriousness of its intentions by announcing a deal with Gildemeister AG. Under the agreement, American Vanadium will market and sell the German company’s CellCube redox flow battery, used to recharge electric vehicles and to store solar and wind power."<

Liquefied Air to Store Energy on U.K. Grid

Highview Power Storage lands grant to build commercial-scale liquid-air energy storage demonstration plant

Source: spectrum.ieee.org

>"U.K.-based Highview Power Storage last week said that it has been awarded an £8 million grant from the U.K. Department of Energy and Climate Change to build a commercial-scale facility that uses liquified air to store energy. Highview is already running a smaller pilot plant, but the full-scale version will be able to store enough energy to deliver five megawatts of power for three hours.  […]

Liquid air energy storage is similar to compressed air energy storage in that air is compressed and released to store and then generate power. WithHighview’s technology, though, ambient air is compressed, then cooled and liquified. That liquefied air, which is almost -200 °C, is stored in large tanks.

When power is needed, the liquid air is released and pumped to high pressure. That causes the liquid to evaporate, turning it into a high-pressure gas which is then run through a turbine to generate power. The planned demonstration plant will be located at a waste processing center. Heat from the waste plant’s gas turbines, which run on captured landfill methane, will be piped in to improve the efficiency of the evaporation process.

One of the advantages of liquid air storage is that it uses off-the-shelf equipment. The tanks for storing liquid air, for instance, are the same as those used in the industrial gas industry. Highview’s expertise is in engineering the different components into a working system with the highest possible efficiency. “Getting the supply chain right is really what our technology is all about. What we’re trying to do is get a system to work with widely available kit,” Brett says.

This commercial-scale plant also gives an indication of how much liquid-air energy storage costs. For 15 megawatt-hours of storage, it will cost about £533 (about $900) per kilowatt-hour. But Brett projects the economies of scale from a larger plant would allow Brightview to get the cost under $500 per kilowatt-hour. At that price, energy storage on the grid can be cost competitive with power plants for a number of applications, such as storing wind and solar energy for delivery during peak hours, say experts.

Highview’s plant will be used to relieve congestion on the grid. For example, stored energy can supply power to the local distribution grid when substations are maxed out during peak hours."<

High-tech firms target energy efficiency for long term investment

WASHINGTON — As President Obama pushes ahead on a strategy for confronting climate change that relies heavily on energy efficiency, some Americans may see flashbacks of Jimmy Carter trying to persuade them to wear an extra sweater and turn down the thermostat.

Source: www.mcall.com

>"Long overshadowed by wind turbines, solar panels and other fashionable machines of renewable power, energy efficiency has lately become a hot pursuit for tech entrepreneurs, big-data enthusiasts and Wall Street speculators.

They have leveraged multibillion-dollar programs in several states, led by California and Massachusetts, to cultivate a booming industry. This onetime realm of scolds, do-gooders and bureaucrats has become the stuff of TED Talks, IPOs and spirited privacy debates.

"This is not about extra sweaters anymore," said Jon Wellinghoff, a San Francisco lawyer who formerly chaired the Federal Energy Regulatory Commission.

Power companies are tapping databases to profile intensely the energy use of their customers, the way that firms like Target track customer product choices. Google Inc. spent $3.2 billion this year to buy Nest, a firm that makes thermostats that resemble iPhones and are designed to intuit the needs of their owners. Energy regulators are providing seed capital to start-ups building such things as waterless laundry machines.

"There was this notion that energy efficiency would never be sexy, never be something people wanted," said Ben Bixby, director of energy products at Nest, which has attracted employees from Apple Inc., Google and Tesla Motors Inc. to its base in Palo Alto.

"Nest has built this object of desire," he said.

On hot days, Nest’s technology enables Southern California Edison to precool the homes of customers before the evening rush, helping the utility avoid the need to fire up extra power plants and netting cash rebates for homeowners.

Spending on efficiency technologies and programs soared to $250 billion worldwide last year, according to the International Energy Agency. The agency projects that amount will more than double by 2035.

U.S. power companies have tripled their investment in efficiency programs — funded mainly through ratepayer fees — since 2006, with California spending the most per customer."<

Read more: http://www.latimes.com/business/la-fi-climate-efficiency-20140626,0,2473215.story#ixzz36DgEcCTY&nbsp;